
The Banff software version 2.05

This set of documents is intended to guide you in using the Banff SAS procedures.
The options and statements for each one of the Banff procedures are explained.
The guides also offer one or more examples of SAS code that you can copy and
paste into your SAS session editor and run as is.

If you need assistance, please contact the support teams at banff.

mailto:banff@statcan.gc.ca

General Information

Overview

Banff is a system that offers methods of editing and imputing survey data in the form of SAS procedures. The
procedures have been built in-house and behave exactly the same way as any other procedures of the SAS
software.

The Banff procedures are available to methodologists responsible for the development of edit and imputation
strategies for numerical continuous data. They are easy to use and present a standard interface that is well
documented. They offer methods that are known and have been approved at Statistics Canada.

Banff is built from libraries of functions that implement the basic algorithms as well as a number of utilities.
The communication with the SAS system is carried out with the use of the SAS/Toolkit functions. With its
flexible and modular architecture, new procedures can be added with little effort to the Banff system, therefore
making it easy to create new versions.

The software is fully supported by a team of programmers and methodologists who continuously work at
improving the software and are ready to answer requests related to problems that users may encounter.

Banff is part of the Statistics Canada Generalized Systems Program and therefore is free of charge to Statistics
Canada employees. Other organizations may purchase a copy or receive a free limited-time evaluation copy.
Please send an e-mail to banff for more details.

Functions
• PROC VERIFYEDITS: Check Edits for consistency and redundancy; Generate Extremal Points and

Implied Edits

• PROC EDITSTATS: Edit Summary Statistics Tables

• PROC OUTLIER: Detection of Outlier Values

• PROC ERRORLOC: Error Localization (Identification of fields to impute)

• PROC DETERMINISTIC: Deterministic Imputation

• PROC DONORIMPUTATION: Donor Imputation

• PROC ESTIMATOR: Estimator Imputation

• PROC PRORATE: Prorated adjustments

• PROC MASSIMPUTATION: Mass Imputation

Benefits
• Seamlessly integrated into SAS

• Available on MS Windows™ and UNIX

mailto:banff@statcan.gc.ca

• Easy to use, easy to learn

• Well documented

• Known and approved methods

• Full methodology and systems development support

Installation
• Foundation software required: SAS 9

• Available on UNIX after a custom installation performed by the technical support team. (the C code
must be re-compiled for each new UNIX platform)

• Installs on MS Windows™ by running the Banff setup program.

Banff news subscription service

For Statistics Canada users:
Users can register to receive updates via email regarding changes and improvements to the Banff software.
This can be done by clicking on the Subscribe button on the News page of the Banff intranet site:

http://gensys/DesktopDefault.aspx?lang=en&tabid=384

Please note that the updates are also available in this section of the intranet site.

Documentation

A user guide is available for each procedure. For more information on the methodology, you can refer to the
Banff Functional Description.

Support Team
The software is supported by a technical team in the System Engineering Division and by a methodology team
in the Business Survey Methods Division. To contact us, please send an e-mail to banff.

http://gensys/DesktopDefault.aspx?lang=en&tabid=384
mailto:banff@statcan.gc.ca

The VERIFYEDITS Procedure

Overview
This procedure checks that the edits in a group of edits are consistent with each other and, if so, identifies any
redundant edits, deterministic variables or hidden equalities. Once these features are identified, the minimal set
of edits may be determined. No respondent data is used in this module; it is the edits themselves which are
analyzed.

The procedure also generates all the extremal points, or vertices, of the feasible region described by the group of
edits. These points represent the most extreme data records which would be acceptable and may therefore give
the user a better understanding of the shape of the feasible region which is being specified.

The procedure then generates additional edits which are implied by a group of edits. These implied edits may
be examined to ensure that all relationships implied by the group of edits are acceptable to the user.

Procedure Syntax
PROC VERIFYEDITS <option(s)>;

PROC VERIFYEDITS Statement
PROC VERIFYEDITS <option(s)>;

To do this Use this option
Specify the edits EDITS=
Specify the maximum number of implied edits to
generate IMPLY=

Specify the maximum cardinality of the shown
extremal points EXTREMAL=

Use the rules in the EDITS= option as specified ACCEPTNEGATIVE
Add one positivity edit for each variable involved in
the rules of the EDITS= option REJECTNEGATIVE

Options
EDITS=quoted string of all edits

specifies the edit rules as linear equations. They must be enclosed in quotes and end with semi-colons.
They are mandatory.

IMPLY=
MAXIMPLIEDEDITS=positive integer

number of implied edits to generate. This number is optional. If this option is not specified no implied
edits will be generated.

EXTREMAL=
MAXCARDINALITY=positive integer

show all extremal points with cardinality less than or equal to this number. Here, cardinality refers to
the number of non-zero coordinates of an extremal point. Optional. If not provided or zero, no extremal
points will be generated. If the option ACCEPTNEGATIVE is specified, no extremal points will be
generated. Indeed, the use of the algorithm (Chernikova) to calculate the extremal points does not
permit that the variables take on negative values.

ACCEPTNEGATIVE

if this option is specified, the rules specified in the EDITS= option will be used as is.

Warning: Before using this option, please read the document Edits for Negative Values on specifying
edits when processing negative numbers in Banff.

REJECTNEGATIVE

if this option is specified, for each variable involved in the rules of the EDITS= option, a positivity edit
will be added.

NOTE: If neither ACCEPTNEGATIVE nor REJECTNEGATIVE is specified, the default value is
REJECTNEGATIVE.

Details

• The edits will always be checked for consistency.
• The ACCEPTNEGATIVE and REJECTNEGATIVE options are mutually exclusive. Specifying both

will cause the procedure to stop.

Example 1

Addition of one positivity edit for each variable involved in the rules of the EDITS= option

/* Implicit addition of positivity edits: REJECTNEGATIVE */
proc VERIFYEDITS
edits = "
HEN_LT20+HEN_GE20+HEN_OTH=HEN_TOT;
2*EGG_LAID<=HEN_GE20;
HEN_GE20<=4*EGG_LAID;
EGG_SOLD<=EGG_LAID;
EGG_VALU<=2.75*EGG_SOLD;
0.9*EGG_SOLD<=EGG_VALU;
fail:HEN_GE20>300000;"
imply = 50
extremal = 10
;

run;

Example 2

No positivity rules added
/* With rules specified, value of variables NETINC1, NETINC2
and ETINCYEAR cN ould be negative. */
proc VERIFYEDITS
edits = "
NETINC1 + NETINC2 = NETINCYEAR;
INC1 - EXP1 = NETINC1;
INC2 - EXP2 = NETINC2;
INC1 >= 0; INC2 >= 0;
EXP1 >= 0; EXP2 >= 0;"
imply = 50
extremal = 10
;
run;

Notes
This document is a guide for the use of the procedure PROC VERIFYEDITS. For more information on the
methodology, please see the Banff Functional Description document.

The EDITSTATS Procedure

Overview
This procedure applies a group of edits to a SAS dataset and determines if each observation passes, misses or
fails each edit. Five tables summarizing the status codes are produced and may be used to fine-tune the group
of edits or to evaluate the effects of imputation. To facilitate the manipulation of that information, five output
data sets are built with the corresponding information and an additional output data set is also produced with
the minimal set of edits built.

Procedure Syntax
PROC EDITSTATS <option(s)>;

BY variable(s);

To do this Use this statement
Produce the tables for each BY group BY

PROC EDITSTATS Statement
PROC EDITSTATS <option(s)>;

To do this Use this option
Specify the input data set DATA=
Specify the edits EDITS=
Specify the output data set that contains the minimal
set of edits

OUTREDUCEDEDITS=

Specify the output data set that contains the report
corresponding to Table 1.1 from the methodological
guide

OUTEDITSTATUS=

Specify the output data set that contains the report
corresponding to Table 1.2 from the methodological
guide

OUTKEDITSSTATUS=

Specify the output data set that contains the report
corresponding to Table 1.3 from the methodological
guide

OUTGLOBALSTATUS=

Specify the output data set that contains the report
corresponding to Table 2.1 from the methodological
guide

OUTEDITAPPLIC=

Specify the output data set that contains the report
corresponding to Table 2.2 from the methodological
guide

OUTVARSROLE=

Specify that negative values are valid values ACCEPTNEGATIVE
Specify that negative values are invalid values REJECTNEGATIVE

Options
DATA=SAS-data-set

specifies the input SAS data set. If BY variables are specified, the observations of this data set must be
sorted by the values of those variables. If DATA= is omitted, the most recently created SAS data set is
used.

EDITS=quoted string of all edits

specifies the edit rules as linear equations. They must be enclosed in quotes and end with semi-colons.
They are mandatory.

OUTREDUCEDEDITS =SAS-data-set

specifies the output data set that contains the minimal set of edits. This SAS data set is optional. If it is
not provided, a default output data set will be generated. Specify _NULL_ as the name for this data set
if no data set is to be generated.

The variables in this SAS data set are:

EDITID

Identification number of the edit belonging to the
minimal set
(useful as reference in OUTEDITSTATUS=)

EDIT_EQUATION The formulation of the edit

OUTEDITSTATUS =SAS-data-set

specifies the output data set that contains the report corresponding to Table 1.1 in the methodological
guide (see Notes below). This SAS data set is optional. If it is not provided, a default output data set
will be generated. Specify _NULL_ as the name for this data set if no data set is to be generated.

The variables in this SAS data set are:

EDITID Identification number of the edit belonging to the
minimal set

OBS_PASSED The number of observations having passed the edit
OBS_MISSED The number of observations having one or more missing

variables involved in the edit
OBS_FAILED The number of observations having failed the edit because

of one or more non-missing values

OUTKEDITSSTATUS =SAS-data-set

specifies the output data set that contains the report corresponding to Table 1.2 in the methodological
guide (see Notes below). This SAS data set is optional. If it is not provided, a default output data set
will be generated. Specify _NULL_ as the name for this data set if no data set is to be generated.

The variables in this SAS data set are:

K_EDITS « k » cumulated edits belonging to the minimal set
OBS_PASSED The number of observations having passed « k » edits

OBS_MISSED The number of observations having one or more missing
variables involved in « k » edits

OBS_FAILED The number of observations having failed « k » edits
because of one or more non-missing values

OUTGLOBALSTATUS =SAS-data-set

specifies the output data set that contains the report corresponding to Table 1.3 in the methodological
guide (see Notes below). This SAS data set is optional. If it is not provided, a default output data set
will be generated. Specify _NULL_ as the name for this data set if no data set must be generated.

The variables in this SAS data set are:

OBS_PASSED The number of observations with PASS as overall
status (i.e. having passed all the edits belonging to the
minimal set)

OBS_MISSED The number of observations with MISS as overall status
(i.e. having one or more missing variables involved in
one or more edits belonging to the minimal set but
without FAIL edit status for any rule)

OBS_ FAILED The number of observations with FAIL as overall status
(i.e. having at least one FAIL edit status for one edit
belonging to the minimal set)

OBS_TOTAL Total number of observations

OUTEDITAPPLIC =SAS-data-set

specifies the output data set that contains the report corresponding to Table 2.1 in the methodological
guide (see Notes below). This SAS data set is optional. If it is not provided, a default output data set
will be generated. Specify _NULL_ as the name for this data set if no data set is to be generated.

The variables in this SAS data set are:

FIELDID The name of the variable
EDIT_APPLIC_PASSED The number of times the variable has

« inherited » a PASS status code given to
observations for the edits involving the variable

EDIT_APPLIC_MISSED The number of times the variable has
« inherited » a MISS status code given to
observations for the edits involving the variable

EDIT_APPLIC_FAILED The number of times the variable has
« inherited » a FAIL status code given to
observations for the edits involving the variable

EDIT_APPLIC_NOTINVOLVED (Number of edits not involving the variable) X
(Number of observations)

EDITS_INVOLVED The number of edits involving the variable

OUTVARSROLE =SAS-data-set

specifies the output data set that contains the report corresponding to Table 2.2 in the methodological
guide (see Notes below). This SAS data set is optional. If it is not provided, a default output data set
will be generated. Specify _NULL_ as the name for this data set if no data set is to be generated.

The variables in this SAS data set are:

FIELDID The name of the variable
OBS_PASSED The number of times a variable has an incidence

on the PASS overall status code given to
observations

OBS_MISSED The number of times a variable has an incidence
on the MISS overall status code given to
observations

OBS_FAILED The number of times a variable has an incidence
on the FAIL overall status code given to
observations

OBS_NOT_APPLICABLE The number of times a variable has no incidence
on the MISS or FAIL overall status code given to
observations

ACCEPTNEGATIVE

if this option is specified, negative values will be considered valid values.

Warning: Before using this option, please read the document Edits for Negative Values on specifying
edits when processing negative numbers in Banff.

REJECTNEGATIVE

if this option is specified, negative values will not be considered valid values. For each variable
involved in the rules of the EDITS= option, a positivity edit will be added.

NOTE: If neither ACCEPTNEGATIVE nor REJECTNEGATIVE is specified, the default value is
REJECTNEGATIVE.

BY Statement
BY variable-1 ... variable-n;

Required arguments

variable(s)

specifies the variable(s) that the procedure uses to form BY groups. The tables will be generated for
each group independently. You can specify more than one variable. This statement is optional.

Details

• The sorting of variables must be done in ascending order of the values.
• If BY variables are specified, the observations of the DATA= input data set must be sorted by the

values of those variables.
• If BY variables are specified, the BY variables will appear in the 5 output data sets that correspond to

the 5 tables from the Banff Functional Description. The BY variables will not appear in the output
data set OUTREDUCEDEDITS=.

• The ACCEPTNEGATIVE and REJECTNEGATIVE options are mutually exclusive. Specifying both
will cause the procedure to stop.

Example
data data;
input x1 x2 x3 Group $1.;
cards;
4 3 2 A
-4 3 2 A
6 3 2 B
4 3 . A
6 3 . B
;
run;
proc sort data=data; by Group; run;
proc editstats
data=data
outreducededits=min_edits
outeditstatus=table11
outkeditsstatus=table12
outglobalstatus=table13
outeditapplic=table21
outvarsrole=table22
edits="
x1+1>=x2;
x1<=5;
x2>=x3;
x1+x2+x3<=9;"
acceptnegative
;
by Group;
run;

Notes
This document is a guide for the use of the procedure PROC EDITSTATS. For more information on
the methodology, please see the Banff Functional Description document.

The OUTLIER Procedure
Overview
This procedure identifies outlying observations. Values of selected variables are compared across records
rather than comparing fields within each individual record, as is done with the linear edit rules.

Procedure Syntax
PROC OUTLIER <option(s)>;

ID variable;

VAR variable(s);

WITH variable(s);

BY variable(s);

To do this Use this statement
Identify the key variable of the input data set(s) ID
Identify variables for which to find outliers VAR
Identify (if needed by the method) historical or auxiliary variables
which will be paired with VAR variables to find outliers WITH

Obtain separate analysis on observations in BY groups BY

PROC OUTLIER Statement
PROC OUTLIER <option(s)>;

To do this Use this option
Specify the input SAS data set that holds variables for which
outliers are found and may also hold the auxiliary variables
depending on the method used

DATA=

Specify (if needed) the input SAS data set that holds the historical
or auxiliary variables

HIST|AUX=

Name the output SAS data set that contains the status of the fields
(FTE/FTI) and also the detailed status for the outliers
(ODEL/ODER/ODIL/ODIR)

OUTSTATUS=

Specify the method to use to detect outlying observations METHOD=
Specify the multiplier for imputation interval MII=
Specify the multiplier for exclusion interval MEI=
Specify the minimum distance multiplier MDM=
Specify the exponent for historical or ratio method EXPONENT=
Specify the minimum number of observations that have to exist in
the DATA= input data set or in a BY group if BY variables are

MINOBS=

used
Specify to add more information about the bounds of the intervals
in the output SAS data set OUTSTATUS=

BOUNDSTAT

Specify that negative values are valid values ACCEPTNEGATIVE
Specify that negative values are invalid values REJECTNEGATIVE

Options
DATA=SAS-data-set

specifies the input SAS data set that holds the variables for which outliers are found. If DATA= is
omitted, the most recently created SAS data set is used.

This data set will also hold the WITH variables when the historical or ratio method is specified
(METHOD=H or METHOD=R) and no data set is specified with the option HIST|AUX=. (See
METHOD= for more information).

If BY variables are specified, the observations of this data set must be sorted by the values of those
variables.

HIST=SAS-data-set

specifies the input SAS data set that holds the historical or auxiliary variables which will be paired with
the VAR variables if METHOD=H or R. Keywords HIST and AUX are interchangeable and refer to the
same methodology (see option METHOD= for more information).

Only observations matching on "key variable" values with the input data set DATA= are kept.

If BY variables are specified, the observations of this data set must be sorted by the values of those
variables.

OUTSTATUS=SAS-data-set

names the output SAS data set that contains a status of FTE or FTI for variables that were identified as
outliers to exclude or to impute. This output data set also contains the field OUTSTATUS giving the
detailed status of the outliers (ODEL, ODER, ODIL or ODIR). If a BY statement is specified, then this
data set also contains the BY variables. If the option BOUNDSTAT is in effect, additional variables
will be written in this output SAS data set (see option BOUNDSTAT). If you want the OUTSTATUS=
data set to be permanent, specify a two-level name.

METHOD=keyword

specifies the method to use to detect outlier variables. Mandatory. For the current method:
CURRENT, CU or C. For the historical or ratio method: HISTORIC, HT, H, RATIO or R.

NOTE: The methodology behind HISTORIC and RATIO is the same. Keywords HISTORIC and RATIO
are interchangeable. This methodology can be used in the following situations:

• identify outlier values for a numeric variable in one input data set paired with the same numeric variable

in another input data set.

• identify outlier values for a numeric variable in one input data set paired with another numeric variable
in the same input data set.

• identify outlier values for a numeric variable in one input data set paired with another numeric variable
in another input data set.

The value specified with the option METHOD= will be used to decide what combinations of
METHOD=, HIST|AUX=, VAR and WITH values are valid. The following table shows the valid
combinations.

 DATA=SAS-data-set
(only one input data set)

DATA=SAS-data-set
HIST | AUX=SAS-data-set
(two input data sets)

Only VAR
statement

Case 1 :

Current method and
identifying outlier values for:

-Xdata1
-Ydata1

PROC OUTLIER
DATA=data1
OUTSTATUS=status
METHOD=current
….
;
VAR X Y;
ID IDNUM;
RUN;

Case 2 :

Historical or Ratio method and
identifying outlier values for:
-Xdata1 (trend analysis between

Xdata1 and Xdata2, i.e. the
same variable in two input
data sets)

PROC OUTLIER
DATA=data1
HIST=data2 /* or AUX=data2
*/
OUTSTATUS=status
METHOD=historic /* or ratio
*/
….
;
VAR X;
ID IDNUM;
RUN;

VAR and WITH
statements

Case 3 :

Historical or Ratio method
and identifying outlier values
for:
-Xdata1 (trend analysis between

Xdata1 and Ydata1, i.e.
between two variables
in the same input data
set)

PROC OUTLIER
DATA=data1
OUTSTATUS=status
METHOD=ratio /* or
historic */
….
;

Case 4 :

Historical or Ratio method and
identifying outlier values for:
-Xdata1 (trend analysis between

Xdata1 and Ydata2, i.e.
between two variables in
two input data sets)

-Zdata1 (trend analysis between
Zdata1 and Zdata2, i.e. the
same variable in two input
data sets)

PROC OUTLIER
DATA=data1
AUX=data2 /* or HIST=data2
*/
OUTSTATUS=status

VAR X;
WITH Y;
ID IDNUM;
RUN;

METHOD=ratio /* or historic
*/
….
;
VAR X Z;
WITH Y Z;
ID IDNUM;
RUN;

MII= positive real number

specifies the multiplier for imputation interval. Optional. It must be greater than zero. MII must be
greater than MEI, if MEI is specified.

MEI= positive real number

specifies the multiplier for exclusion interval. Optional. It must be greater than zero. MEI must be
lower than MII, if MII is specified.

MDM= real number

specifies the minimum distance multiplier. Optional. It must be greater than or equal to zero. Default
value is 0.05.

NOTE : The minimum distance multiplier specified will not be used when the value for the median is 0
for the current method or the value of the median of effects is 0 for the historical or ratio method
(METHOD=H or METHOD=R). See the Banff Functional Description for more information on the
effect definition and calculation.

EXPONENT=real number between 0 and 1

specifies the exponent for historical or ratio method (METHOD=H or METHOD=R). Optional. It must
be between 0 and 1 inclusively. Default value is 0.

MINOBS=positive integer greater than 3

specifies the minimum number of observations that must exist on the DATA= data set or in the BY
group being processed. Optional. This option applies to all methods. If not specified, the default value
is 10.

BOUNDSTAT

specifies that the user wants more information about the bounds of the imputation and exclusion
intervals in the output SAS data set OUTSTATUS=. This information is the same as the one written in
the SAS log. When either the MII option or the MEI option is not specified, the values of the
corresponding bounds are set to missing. Depending on the method specified with the option
METHOD=, additional variables may appear on the data set. Optional.

For the current data method (METHOD = C), variables added to the output data set are:

CURRENT_VALUE current value of the outlier variable (value read from the input data set

DATA=)
IMP_BND_L value of the upper bound of left imputation interval if option MII= has

been specified
(same as lower bound of left exclusion interval if MEI has been
specified)

EXCL_BND_L value of upper bound of left exclusion interval if option MEI= has
been specified
(same as lower bound of acceptance interval)

EXCL_BND_R value of lower bound of right exclusion interval if option MEI= has
been specified
(same as upper bound of acceptance interval)

IMP_BND_R value of lower bound of right imputation interval if option MII= has
been specified
(same as upper bound of right exclusion interval if MEI has been
specified)

For the historical or ratio method (METHOD = H or METHOD= R), variables added to the output
data set are:

CURRENT_VALUE current value of the outlier variable (will be read from the input data
set DATA=)

HIST_AUX If WITH specified:
name of the variable paired with the corresponding VAR variable

If WITH not specified, this variable is not added in the output data set

HIST_AUX_VALUE If WITH specified:
value of the variable paired with the corresponding VAR variable
(will be read from the HIST|AUX= data set if specified, from the
DATA= data set otherwise)

If WITH not specified:
value of the variable having the same name as the VAR variable (will
be read from the HIST|AUX= data set)

EFFECT value used to compare with the interval boundaries
IMP_BND_L value of the upper bound of left imputation interval if option MII= has

been specified
(same as lower bound of left exclusion interval if MEI has been
specified)

EXCL_BND_L value of upper bound of left exclusion interval if option MEI= has
been specified
(same as lower bound of acceptance interval)

EXCL_BND_R value of lower bound of right exclusion interval if option MEI= has
been specified
(same as upper bound of acceptance interval)

IMP_BND_R value of lower bound of right imputation interval if option MII= has
been specified
(same as upper bound of right exclusion interval if MEI has been
specified)

ACCEPTNEGATIVE

if this option is specified, negative values will be considered valid values and will be used in
calculations.

NOTE: This option is available for METHOD=CURRENT, CU or C only.

REJECTNEGATIVE

if this option is specified, negative values will not be used in calculations.

NOTE: If neither ACCEPTNEGATIVE nor REJECTNEGATIVE is specified, the default value is
REJECTNEGATIVE.

ID Statement
ID variable;

Required argument

variable

specifies the variable that the procedure uses as the key variable of the input data set(s). It is mandatory.
It must be a character variable and only one is allowed (i.e. no composite key).

VAR Statement
VAR variable-1 ... variable-n;

Required arguments

variables

The VAR statement lists variables for which to find outliers. The variables must be numeric and must
exist in the input data set DATA=.

For the current data method, the VAR statement is optional. If not specified, all numeric variables of
the DATA= data set other than the ones specified with the BY statement will be processed.

For the historical or ratio method (METHOD=H or METHOD=R), the VAR statement is mandatory. If
the WITH statement is not specified when METHOD=H or R, the option HIST|AUX= is mandatory and
the variables specified with the VAR statement must exist on the input data set HIST|AUX= (see option
METHOD= and statement WITH).

WITH Statement
WITH variable-1 ... variable-n;

Required arguments

variables

The WITH statement lists variables to be paired one by one with the VAR variables and concerns only
the historical or ratio method (METHOD=H or METHOD=R). Optional (see option METHOD= for
more information).

If a WITH statement is specified, the number of variables in the list must be the same as the one in the
VAR list and the variables must be numeric in the input data set from which they are read. If the option
HIST|AUX= is specified, the WITH variables are read from the data set specified, otherwise they are
read from the DATA= data set.

BY Statement
BY variable-1 ... variable-n;

Required arguments

variable(s)

specifies the variable(s) that the procedure uses to form BY groups. If the outlier method specified is
the historical or ratio method (METHOD=H or METHOD=R) and option HIST|AUX= is specified, the
BY variable(s) must exist in both the DATA= and the HIST|AUX= data sets. A BY statement can be
used to obtain separate analysis on observations in groups defined by the BY variables. You can specify
more than one variable. This statement is optional.

Details

• The sorting of variables must be done in ascending order of the values.
• If BY variables are specified, the observations of the DATA= and HIST (or AUX)= input data sets

must be sorted by the values of those variables.
• If a BY statement is used, the BY variables will appear in the OUTSTATUS data set.
• At least one of MII and MEI must be specified.
• A variable cannot be specified in more than one ID, BY, VAR and WITH statements. These lists of

variables are mutually exclusive.
• Missing values will not be processed.
• If the REJECTNEGATIVE option is in effect, the observations with negative values for variables

involved in calculations will not be processed. A warning message will be entered in the log file with a
counter for the number of observations dropped.

• The ACCEPTNEGATIVE and REJECTNEGATIVE options are mutually exclusive. Specifying both
will cause the procedure to stop.

• If the value of MINOBS is less than 3, the procedure will stop with an error message.
• If the value of MINOBS is greater or equal to 3 and less than 10, a warning will be written to the log.
• If the number of valid observations is less than MINOBS, the procedure will not run.

Example 1

Detecting outliers using the current trend method with options boundstat and
acceptnegative

options linesize=80 pagesize=32000;
data outlierdata (drop=n);
n = 1;
do while (n <= 30);
IDENT = 'R' || put (n, Z7.);
X01 = round (ranuni (1) * 20);
X02 = round (ranuni (1) * 20);
if mod(n,2)=0 then Prov=10; else Prov=11;
if mod(n,5)=0 then do; X01=-X01; X02=-X02; end;
output;
n = n + 1;
end;
run;
/* sort the data in order of the BY variable */
proc sort; by prov; run;
proc outlier
data=outlierdata
outstatus=outlierstatus
method=current
mii=1.5
mei=1.3
mdm=.05
boundstat
acceptnegative
;
id ident;
var X01 X02;
by prov;
run;

Example 2
Detecting outliers using the historical trend method (rejectnegative is the default value)

options linesize=80 pagesize=32000;
data outlierdata (drop=n);
n = 1;
do while (n <= 30);
IDENT = 'R' || put (n, Z7.);
X01 = round (ranuni (1) * 20);
X02 = round (ranuni (1) * 20);
if mod(n,2)=0 then Prov=10; else Prov=11;
if mod(n,5)=0 then do; X01=-X01; X02=-X02; end;
output;

n = n + 1;
end;
run;
/* sort the data in order of the BY variable */
proc sort; by prov; run;
data outlierhist (drop=n);
n = 1;
do while (n <= 30);
IDENT = 'R' || put (n, Z7.);
X01 = round (ranuni (1) * 30);
X02 = round (ranuni (1) * 30);
if mod(n,2)=0 then Prov=10; else Prov=11;
if mod(n,7)=0 then do; X01=-X01; X02=-X02; end;
output;
n = n + 1;
end;
run;
/* sort the data in order of the BY variable */
proc sort; by prov; run;
proc outlier
data=outlierdata
hist=outlierhist
outstatus=outlierstatus
method=historic
mii=1.5
mei=1.3
mdm=.05
;
id ident;
var X01 X02;
by prov;
run;

Notes
This document is a guide for the use of the procedure PROC OUTLIER. For more information on the
methodology, please see the Banff Functional Description document.

The ERRORLOC Procedure

Overview
This procedure identifies the minimum number of variables which must be changed in each observation so that
the observation can be made to pass all the edits. The variables which require imputation are identified, but no
imputation takes place.

Procedure Syntax
PROC ERRORLOC <option(s)>;

ID variable;

BY variable(s);

To do this Use this statement
Identify the key variable of the input data set ID
Perform error localisation for each BY group BY

PROC ERRORLOC Statement
PROC ERRORLOC <option(s)>;

To do this Use this option
Specify the input data set DATA=
Specify the output SAS data set that contains the status
of the fields (FTI) OUTSTATUS=

Specify the output SAS data set that contains the rejected
observations OUTREJECT=

Specify the edits EDITS=
Specify the weights for the variables WEIGHTS=
Specify the maximum cardinality CARDINALITY=
Specify the maximum processing time allowed per
observation TIMEPEROBS=

Specify that negative values are valid values ACCEPTNEGATIVE
Specify that negative values are invalid values REJECTNEGATIVE

Options
DATA=SAS-data-set

specifies the input SAS data set. The observations of this data set must be sorted by the values of
the key variable specified in the ID statement. If BY variables are specified, the observations of
this data set must also be sorted by the values of those variables. When sorting, the BY variables

must be listed before the ID variable. If DATA= is omitted, the most recently created SAS data set is
used.

OUTSTATUS=SAS-data-set

names the output data set that contains the variables that require imputation. The STATUS variable is
set to FTI. The variables in this data set are: "key variable", FIELDID and STATUS. FIELDID is the
variable whose values are the names of the variables for which a STATUS of FTI is assigned. If a BY
statement is specified, then this data set also contains the BY variables. If you want the OUTSTATUS=
data set to be permanent, specify a two-level name.

OUTREJECT=SAS-data-set

names the output data set that contains the observations for which error localisation could not be
performed. The variables created in this data set are: "key variable" and NAME_ERROR. If a BY
statement is specified, then this data set also contains the BY variables. If you want the
OUTREJECT=data set to be permanent, specify a two-level name. The following table describes the
two types of errors:

CARDINALITY
EXCEEDED*

The cardinality for this observation's solution
exceeds the maximum cardinality specified in the
CARDINALITY= option.

TIME EXCEEDED* The processing time for this observation exceeds the
maximum time allowed per observation specified in the
TIMEPEROBS= option.

*Any observations on which error localization could not be performed, because they exceeded the
maximum allowable cardinality or time per observation, will be identified on the REJECTS file and will
still remain on the original input data set. If the user plans to run additional Banff procedures on the
data, the rejected observations should be removed with a user-defined program. Otherwise, they will be
taken into account when other Banff procedures generate statistics on the data in the SAS log. The
REJECTS can be added back later with another user-defined program if, for example, the user wants to
keep a complete file or to impute them using Proc Massimputation.

EDITS=quoted string of all edits

specifies the edit rules as linear equations. They must be enclosed in quotes and end with semi-colons.
They are mandatory. It is important to note that the EDITS are used to tell the procedure which
variables from the DATA= dataset will be processed.

WEIGHTS=quoted string of weights

specifies the weights. Optional. If a weight is not specified for a variable, it will be set to 1. Weights
are specified by a list of variable=value statements separated by semi-colons, where variable is a
variable specified in the EDITS= option and value is a number greater than 0. Weights are used to
exert some influence on the fields that are selected for imputation. Please refer to the Banff Functional
Description for more details on using weights.

CARDINALITY=positive number

specifies the maximum cardinality. Optional. If not provided, the result will not be constrained by
cardinality.

TIMEPEROBS=positive number

specifies the maximum processing time spent on each observation in seconds in order to find a solution.
Optional. If not provided, the time limit will be set to 20 seconds per observation.

SEED=positive integer

this parameter is optional and is useful only in development when results need to be compared from one
run to the next. The default value is a random number. If a negative value, 0 or a value exceeding the
maximum acceptable by the platform is specified, it will be replaced by the default value.

ACCEPTNEGATIVE

if this option is specified, negative values will be considered valid values.

Warning: Before using this option, please read the document Edits for Negative Values on specifying
edits when processing negative numbers in Banff.

REJECTNEGATIVE

if this option is specified, variables with negative values will be flagged as fields to impute (FTI). For
each variable involved in the edits of the EDITS= option, a positivity edit will be added.

NOTE: If neither ACCEPTNEGATIVE nor REJECTNEGATIVE is specified, the default value is
REJECTNEGATIVE.

ID Statement
ID variable;

Required argument

variable

specifies the variable that the procedure uses as the key variable of the input data set. It is mandatory. It
must be a character variable and only one is allowed (i.e. no composite key).

BY Statement
BY variable-1 ... variable-n;

Required arguments

variable(s)

specifies the variable(s) that the procedure uses to form BY groups. Error localisation is performed on
one observation at a time. So specifying BY variables will not influence the results. However, the BY
variables will appear in the two output data sets. You can specify more than one variable. This
statement is optional.

Details

• The sorting of observations must be done in ascending order of the values of the variables.
• If BY variables are specified, the observations of the DATA= input data set must be sorted by the

values of those variables as well as by the values of the ID variable. When sorting, the BY
variables must be listed before the ID variable.

• If BY variables are specified, the BY variables specified will appear in the OUTSTATUS= and
OUTREJECT= data sets.

• The only variables that will be processed are the ones specified in the edits.
• It is not necessary to code any of the positivity edits.
• The coherence of the system of linear equations is verified. If the system is not coherent, the program

stops with an error message.
• Observations with a missing value for the key variable in the input data set DATA= will not be

processed. A warning message will be entered in the log file with a counter for the number of
observations dropped.

• Variables with a MISSING value will always be marked as FTI.
• If the option REJECTNEGATIVE is in effect, variables with a negative value will always be marked as

FTI.
• The procedure does not read any field statuses at input. So for example, if the OUTLIER procedure was

run and it identified some fields as being FTI, the user will have to set the value of those fields to
MISSING before running ERRORLOC in order for ERRORLOC to flag those fields as Fields to be
Imputed.

• The ACCEPTNEGATIVE and REJECTNEGATIVE options are mutually exclusive. Specifying both
will cause the procedure to stop.

Example
Option "rejectnegative" is the default value and the input data set is sorted by the BY variable ZONE
listed before the ID variable IDENT (BY ZONE IDENT).

options ls=80 ps=80 nodate;
data example;
input IDENT $ X1 X2 ZONE $1.;
cards;
R03 10 40 B
R02 -4 49 A
R04 4 49 A
R01 16 49 A
R05 15 51 B
R07 -4 29 B
R06 30 70 B
;
run;
/* sort the data in order of the BY variable */
proc sort data=example; by ZONE IDENT;run;
proc errorloc
data=example
outstatus=outstatus
outreject=outreject
edits="x1>=-5; x1<=15; x2>=30; x1+x2<=50;"
weights="x1=1.5;"

cardinality=2
timeperobs=.1
;
id IDENT;
by ZONE;
run;

Note
This document is a guide for the use of the procedure PROC ERRORLOC. For more information on the
methodology, please see the Banff Functional Description document.

The DETERMINISTIC Procedure

Overview
This procedure processes the data by applying the deterministic imputation method. This method supplies
valid values to fields to impute in the case where only one possible imputed value will permit them to pass the
set of edits.

Procedure Syntax
PROC DETERMINISTIC <option(s)>;

ID variable;

BY variable(s)

To do this Use this statement
Identify the key variable of the input data set ID
Perform imputation for each BY group BY

PROC DETERMINISTIC Statement
PROC DETERMINISTIC <option(s)>;

To do this Use this option
Specify the input data set DATA=
Specify the SAS data set that contains the status
of the fields (FTI) before imputation

INSTATUS=

Specify the SAS data set that contains the
imputed data

OUT=

Specify the SAS data set that contains the status
of the fields (IDE) after imputation

OUTSTATUS=

Specify the edits EDITS=
Specify that negative values are valid values ACCEPTNEGATIVE
Specify that negative values are invalid values REJECTNEGATIVE

Options
DATA=SAS-data-set

specifies the input SAS data set. The observations of this data set must be sorted by the values of
the key variable specified on the ID statement. If BY variables are specified, the observations of
this data set must also be sorted by the values of those variables. When sorting, the BY variables

must be listed before the ID variable. If DATA= is omitted, the most recently created SAS data set
is used.

INSTATUS=SAS-data-set

specifies the SAS data set that contains the status of the fields (FTI) before imputation. This SAS data
set is mandatory. Three character variables must be in this data set: "key variable", FIELDID and
STATUS. The "key variable" is the same as the one specified for the DATA= input data set and in the
ID statement. FIELDID is the variable whose values are the names of the variables for which a
STATUS of FTI is assigned.
If BY variables are specified: If all the BY variables specified are present on this data set, then
the observations of this data set must be sorted by the values of those variables as well as by the
values of the ID variable. When sorting, the BY variables must be listed before the ID variable.
If not all the BY variables specified are present on this data set, then the observations need only
be sorted by the values of the ID variable.
Note: To increase the performance of the procedure, the BY variables should be in this data set.

OUT=SAS-data-set

names the output data set that contains the imputed data. Each observation contains the EDITS=
variables where at least one variable has been imputed. If a BY statement is specified, then this data
set also contains the BY variables. If you want the OUT= data set to be permanent, specify a two-level
name.

OUTSTATUS=SAS-data-set

names the output data set that contains the variables that were successfully imputed, with status equal
to IDE. The variables in this SAS data set are: "key variable", FIELDID and STATUS. If a BY
statement is specified, then this data set also contains the BY variables. If you want the
OUTSTATUS= data set to be permanent, specify a two-level name.

EDITS=quoted string of all edits

specifies the edit rules as linear equations. They must be enclosed in quotes and end with semi-colons.
They are mandatory. It is important to note that the EDITS are used to tell the procedure which
variables from the DATA= dataset will be processed.

ACCEPTNEGATIVE

if this option is specified, negative values will be considered valid values. Therefore it will be possible
to impute a variable with a negative value.
Warning: Before using this option, please read the document Edits for Negative Values on specifying
edits when processing negative numbers in Banff.

REJECTNEGATIVE

if this option is specified, it will not be possible to impute a variable with a negative value. For each
variable involved in the rules of the EDITS= option, a positivity edit will be added. If an observation
has a variable with a negative value without an FTI status code in the INSTATUS= dataset for that
variable, the observation will be rejected.

Note: If neither ACCEPTNEGATIVE nor REJECTNEGATIVE is specified, the default value is
REJECTNEGATIVE.

ID Statement
ID variable;

Required arguments
variable
specifies the variable that the procedure uses as the key variable of the input data set. It is mandatory.
It must be a character variable and only one is allowed (no composite key).

BY Statement
BY variable-1 ... variable-n;

Required arguments
variable(s)
specifies the variable(s) that the procedure uses to form BY groups. Deterministic imputation is
performed on one observation at a time. So specifying BY variables will not influence the results.
However, the BY variables will appear in the two output data sets. You can specify more than one
variable. This statement is optional.

Details

• The sorting of variables must be done in ascending order of the values.
• If BY variables are specified, the observations of the DATA= input data set must be sorted by the

values of those variables, and by the values of the ID variable; when sorting the BY variables
must be listed before the ID variable.

• If BY variables are specified: If all the BY variables specified are present on the INSTATUS=
input data set, then the observations of this data set must be sorted by the values of those variables
as well as by the values of the ID variable. When sorting, the BY variables must be listed before
the ID variable.

• If not all the BY variables specified are present on the INSTATUS= input data set, then the
observations need only be sorted by the ID variable.
Note: To increase the performance of the procedure, the BY variables should be in the INSTATUS=
data set.

• If BY variables are specified, the BY variables specified will appear in the OUT= and OUTSTATUS=
data sets.

• Observations with a missing value for the key variable in the DATA= data set will not be processed. A
warning message will be entered in the log file with a counter for the number of observations dropped.

• Observations with a valid value for the key variable in the DATA= set but with missing values in this
data set for one or more fieldids specified in the edit rules, without the status 'FTI' for these fieldids in
the INSTATUS= data set will not be processed. A warning message will be entered in the log file with
a counter for the number of observations dropped.

• If the REJECTNEGATIVE option is in effect, observations with a valid value for the key variable in the
DATA= data set but with negative values in this data set for one or more fieldids specified in the edits
without the status 'FTI' for these fieldids in the INSTATUS= data set will not be processed. A warning
message will be entered in the log file with a counter for the number of observations dropped.

• If the option REJECTNEGATIVE is in effect, fields to impute will not be imputed with negative values.
• Observations with a missing value for the key variable or a missing value for FIELDID in the

INSTATUS= data set will not be processed. A warning message will be entered in the log file with a
counter for the number of observations dropped.

• The ACCEPTNEGATIVE and REJECTNEGATIVE options are mutually exclusive. Specifying both
will cause the procedure to stop.

Example
data determdata;
infile cards;
input ident $ TOTAL Q1 Q2 Q3 Q4 staff prov;
cards;
REC01 500 100 125 125 150 2000 24
REC02 750 200 170 130 250 2500 24
REC03 400 80 90 100 130 1500 24
REC04 1000 150 250 350 250 3500 24
REC05 3000 500 500 1000 1000 5000 24
REC06 50 10 15 500 20 100 24
REC07 600 110 140 230 45 2400 30
REC08 900 175 999 999 300 3000 30
REC09 2500 400 555 600 5000 89 30
REC10 800 11 12 13 14 2800 30
REC11 -25 -10 -5 -5 -10 3000 30
;
data determstat;
infile cards;
input fieldid $ status $ ident $;
cards;
Q3 FTI REC06
Q4 FTI REC07
Q2 FTI REC08
Q3 FTI REC08
Q4 FTI REC09
staff FTI REC09
Q1 FTI REC10
Q2 FTI REC10
Q3 FTI REC10
Q4 FTI REC10
Q4 FTI REC11
;
proc DETERMINISTIC
data=determdata
instatus=determstat
out=outdata
outstatus=outstatus
edits="Q1 + Q2 + Q3 + Q4 - TOTAL = 0;"
acceptnegative;
id ident;
by prov;
run;

Notes
This document is a guide for the use of the procedure PROC DETERMINISTIC. For more information on the
methodology, please see the Banff Functional Description document.

The DONORIMPUTATION Procedure

Overview
This procedure performs donor imputation using a nearest neighbour approach to find, for each observation
requiring imputation, the valid observation that is most similar to it and that will allow the imputed recipient
observation to pass the user specified post imputation edits.
An observation requiring imputation is called a recipient. A recipient is an observation for which at least one
variable of the linear equations is marked as FTI in the INSTATUS dataset.
A donor is an observation which does not have any variables marked as FTI in the INSTATUS dataset for the
variables specified in the linear equations. The procedure does not verify that donors pass the edits.

Procedure Syntax
PROC DONORIMPUTATION <option(s)>;

ID variable;

MUSTMATCH variable(s);

DATAEXCLVAR variable;

BY variable(s);

To do this Use this statement
Identify the key variable of the input data set ID
Specify user defined matching fields MUSTMATCH
Identify the variable of the input data set used to
exclude donors

DATAEXCLVAR

Perform imputation for each BY group BY

PROC DONORIMPUTATION Statement
PROC DONORIMPUTATION <option(s)>;

To do this Use this option
Specify the input data set DATA=
Specify the SAS data set that contains the status of the
fields (FTI) before imputation

INSTATUS=

Specify the SAS data set that contains the imputed
data

OUT=

Specify the SAS data set that contains the status of the
fields (IDN) after imputation

OUTSTATUS=

Specify the SAS data set that contains the mapping of
donor/recipient identifiers

DONORMAP=

Specify the edits EDITS=
Specify the post imputation edits POSTEDITS=

Specify the minimum number of donors required to
perform imputation

MINDONORS=

Specify the minimum percentage of donors required
to perform imputation

PCENTDONORS=

Specify the maximum number of donors to try when
looking for a donor

N=

Specify the exclusion or non exclusion of donors
having imputed values for at least one field in the
edits rules

ELIGDON=

Specify to use random selection of donors for
recipients without matching fields

RANDOM

Specify to add MFS, MFU and MFB matching field
status to OUTSTATUS

MATCHFIELDSTAT

Specify the root to the random number generator SEED=
Specify that negative values are valid values ACCEPTNEGATIVE
Specify that negative values are invalid values REJECTNEGATIVE
Specify the maximum number of times a donor can be
used

NLIMIT

Specify the multiplier for ratio limit, in order to limit
the number of times a donor can be used

MRL

Options
DATA=SAS-data-set

specifies the input SAS data set. If BY variables are specified, the observations of this data set
must be sorted by the values of those variables. If DATA= is omitted, the most recently created
SAS data set is used.

INSTATUS=SAS-data-set

specifies the SAS data set that contains the status of the fields (FTI) before imputation. This SAS data
set is mandatory. Three character variables must be in this data set: "key variable", FIELDID and
STATUS. The "key variable" is the same as the one specified on the input SAS data set and on the ID
statement. FIELDID is the variable whose values are the names of the variables for which a STATUS
of FTI is assigned.
If BY variables are specified: If all the BY variables specified are present on the INSTATUS=
input data set, then the observations of this data set must be sorted by the values of the BY
variables.
Note: To increase the performance of the procedure, the BY variables should be in the INSTATUS=
data set.

OUT=SAS-data-set

names the output data set that contains the imputed data. Each observation contains the EDITS=
variables where at least one variable has been imputed. If a BY statement is specified, then this data
set also contains the BY variables. If you want the OUT= data set to be permanent, specify a two-level
name.

OUTSTATUS=SAS-data-set

names the output data set that contains the fieldids of the variables that were successfully imputed,
with status equal to IDN. The variables in this SAS data set are: "key variable", FIELDID and
STATUS. If a BY statement is specified, then this data set also contains the BY variables. If you want
the OUTSTATUS= data set to be permanent, specify a two-level name.

DONORMAP=SAS-data-set

names the output data set that contains the identifiers of recipients that have been imputed along with
their donor identifier and the number of donors tried before the recipient passed the postedits. This
number will not be greater than option N unless some donors are found with the same distance from
the recipient. This number will be zero if the donor was found randomly. If a BY statement is
specified, then this data set also contains the BY variables. If you want the DONORMAP= data set to
be permanent, specify a two-level name.

EDITS=quoted string of all edits

specifies the original edit rules as linear equations. They must be enclosed in quotes and end with
semi-colons. They are mandatory. The original edits are used to find matching fields and to tell the
procedure which variables from the DATA=dataset will be processed.

POSTEDITS=quoted string of all edits

specifies the post-imputation edit rules as linear equations. The post imputation edits determine if the
imputed recipient has been successfully imputed or not. They should be enclosed in quotes and
separated by semi-colons. They are optional. If they are not specified, the (original) EDITS will be
used.

MINDONORS=positive integer

represents the minimum number of donors needed in the current BY group in order for imputation to
be performed (on the current BY group). This number is optional and has a default of 30.

PCENTDONORS=real number

represents the minimum percentage of donors needed in the current BY group in order for imputation
to be performed (on the current BY group). This number is optional and has a default of 30.0. Its
value must be between 1 and 100 inclusively.

N=positive integer

represents the maximum number of donors to try to eventually find a suitable donor. This number is
mandatory.

ELIGDON=keyword

used to include or exclude from all potential donors the donors with imputed values for at least one
field of the edits. Acceptable keywords are A or ANY (to include all potential donors), O or
ORIGINAL (to exclude donors with Ixxx fields, except IDE coming from deterministic imputation).
Optional. If omitted, ORIGINAL is the default value.

RANDOM

if this option is specified then random selection of a donor will be applied to recipients without
matching fields. If this option is not set, no imputation will be performed for recipients without
matching fields.

Note: No matter what the value of this option is, only the nearest neighbour method will be applied for
recipients with matching fields.

MATCHFIELDSTAT

if this option is specified, then the statuses of all matching fields will be added to the OUTSTATUS=
dataset for each recipient. The status of a matching field can take on one of three possible values:
MFS (system matching field), MFU (user-specified matching field), or MFB (matching field that is
both system and user-specified). User-specified matching fields will be the ones specified, if any, on
the MUSTMATCH statement.

SEED=positive integer

this parameter is optional and is useful only in development when results need to be compared from
one run to the next. The default value is a random number. If a negative value, 0 or a value exceeding
the maximum acceptable by the platform is specified, it will be replaced by the default value.

ACCEPTNEGATIVE

if this option is specified, negative values will be considered valid values. Therefore it will be possible
to impute a variable with a negative value.

Warning: Before using this option, please read the document Edits for Negative Values on specifying
edits when processing negative numbers in Banff.

REJECTNEGATIVE

if this option is specified, it will not be possible to impute a variable with a negative value. For each
variable involved in the edits of the EDITS= option, a positivity edit will be added. If an observation
has a variable with a negative value but without an FTI status code in the STATUS= dataset, the
observation will be rejected.

NOTE: If neither ACCEPTNEGATIVE nor REJECTNEGATIVE is specified, the default value is
REJECTNEGATIVE.

NLIMIT=positive integer

if this option is specified, it will limit the number of times a donor can be used. NLIMIT and MRL are
optional parameters used to calculate DONORLIMIT. One or both can be specified. When both are
specified, DONORLIMIT takes the rounded up maximum value between NLIMIT and the ratio using
the MRL. If NLIMIT and MRL are omitted, the number of times a donor can be used is unlimited.

MRL=positive real number

if this option is specified, it will limit the number of times a donor can be used. The MRL (multiplier
ratio limit) is multiplied by the ratio of the number of recipients to donors. NLIMIT and MRL are
optional parameters used to calculate DONORLIMIT. One or both can be specified. When both are
specified, DONORLIMIT takes the rounded up maximum value between NLIMIT and the ratio using
the MRL. If NLIMIT and MRL are omitted, the number of times a donor can be used is unlimited.

ID Statement
ID variable;

Required argument

variable

specifies the variable that the procedure uses as the key variable of the DATA= input data set. It is
mandatory. It must be a character variable and only one is allowed (no composite key).

MUSTMATCH Statement
MUSTMATCH variable-1 ... variable-n;

Required arguments

variables

specifies the variable(s) that the procedure uses as "user matching fields". This statement is optional.

NOTE: The "user matching fields" are matching fields that are applied to ALL recipients. The system
also finds "system matching fields" that are specific to each recipient even when this statement is not
specified.

DATAEXCLVAR Statement
DATAEXCLVAR variable;

Required argument

variable

specifies the variable that the procedure uses to exclude observations from the pool of donors when
reading the input data set DATA=. This statement is optional.

NOTE: This variable is a character variable that must be created prior to calling PROC
DONORIMPUTATION and that must be added to the DATA= input SAS data set. The variable will
take the value 'E' if a donor is to be excluded. Observations identified as recipients will never be
excluded, no matter what value this variable takes. (See example)

BY Statement
BY variable-1 ... variable-n;

Required arguments

Variable(s)

specifies the variable(s) that the procedure uses to form BY groups. Imputation will be performed on
each group independently. You can specify more than one variable. This statement is optional.

Details

• The sorting of variables must be done in ascending order of the values.
• If BY variables are specified, the observations of the DATA= input data set must be sorted by the

values of those variables.
• If BY variables are specified: If all the BY variables specified are present on the INSTATUS=

input data set, then the observations of this data set must be sorted by the values of the BY
variables.
Note: To increase the performance of the procedure, the BY variables should be in the INSTATUS=
data set.

• If BY variables are specified, the BY variables will appear in the OUT=, OUTSTATUS= and
DONORMAP= data sets.

• Observations with a missing value for the key variable in the input data set DATA= will not be
processed. A warning message will be entered in the log file with a counter for the number of
observations dropped.

• Observations with a valid value for the key variable in the input data set DATA= but with missing
values in this data set for one or more fieldids specified in the edit rules, without the status 'FTI' for
these fieldids in the INSTATUS= data set, will not be processed. A warning message will be entered
in the log file with a counter for the number of observations dropped.

• Observations with a valid value for the key variable in the input data set DATA= but with missing
values in this data set for one or more fieldids specified in the MUSTMATCH statement, without the
status 'FTI' for these fieldids in the INSTATUS= data set, will not be processed. A warning message
will be entered in the log file with a counter for the number of observations dropped.

• If the REJECTNEGATIVE option is in effect, observations with a valid value for the key variable in
the input data set DATA= but with negative values in this data set for one or more fieldids specified in
the edit rules, without the status 'FTI' for these fieldids in the INSTATUS= data set, will not be
processed. A warning message will be entered in the log file with a counter for the number of
observations dropped.

• If the REJECTNEGATIVE option is in effect, observations with a valid value for the key variable in
the input data set DATA= but with negative values in this data set for one or more fieldids specified in
the MUSTMATCH statement, without the status 'FTI' for these fieldids in the INSTATUS= data set,
will not be processed. A warning message will be entered in the log file with a counter for the number
of observations dropped.

• If the option REJECTNEGATIVE is in effect, fields to impute will not be imputed with negative
values.

• Observations with valid values in the input data set DATA= for the key variable and for the variables
in the edit rules, and with one or more MUSTMATCH fields outside the edits marked with the status
'FTI' in the INSTATUS= data set will not be processed. These observations are called mixed
observations. A warning message will be entered in the log file with a counter for the number of
mixed observations dropped.

• Observations with a missing value for the key variable or a missing value for FIELDID in the
INSTATUS= data set will not be processed. A warning message will be entered in the log file with a
counter for the number of observations dropped.

• A donor having a fieldid with the status 'FTE' will not be used to impute the value of the same fieldid
for a recipient.

• A variable cannot be specified in more than one ID, BY, EDITS, MUSTMATCH or DATAEXCLVAR
statement. Except for the MUSTMATCH variables which can also be in the EDITS, these lists of
variables are mutually exclusive.

• Variables with an "IDE" status in the INSTATUS data set are considered as having original values (not
previously imputed).

• The ACCEPTNEGATIVE and REJECTNEGATIVE options are mutually exclusive. Specifying both
will cause the procedure to stop.

• If the NLIMIT or the MRL option is in effect, details will be entered in the log file with regards to the
ratio of donors that have reached DONORLIMITj for each group.

• If the NLIMIT or MRL option is in effect, DONORLIMIT data will be added to the DONORMAP=
dataset. When these parameters are omitted, the DONORLIMIT variable will remain empty in the
DONORMAP= dataset.

• When limiting donors with the NLIMIT option, the number of remaining donors may end up being less
than MINDONORS. In such a case, the procedure will continue and ignore MINDONORS which was
validated at the beginning. The same applies for PCENTDONORS.

Example
/* create the data= data set */
data donordata;
infile cards;
input IDENT $ TOTAL Q1 Q2 Q3 Q4 STAFF PROV;
cards;
REC01 500 120 150 80 150 50 24
REC02 750 200 170 130 250 75 24
REC03 400 80 90 100 130 40 24
REC04 1000 150 250 350 250 100 24
REC05 1050 200 225 325 300 100 24
REC06 500 100 125 5000 130 45 24
REC07 400 80 90 100 15 40 30
REC08 950 150 999 999 200 90 30
REC09 1025 200 225 300 10 10 30
REC10 800 11 12 13 14 80 30
REC11 -25 -10 -5 -5 -10 3000 30
REC12 1000 150 250 350 250 100 30
REC13 999 200 225 325 300 100 30
REC14 -25 -10 -5 -10 -5 3000 30
;
/* create the exclusion variable */
data donordata;
set donordata;
if (TOTAL > 1000) then TOEXCL='E';
else TOEXCL='';
run;
/* create the instatus data set */
data donorstat;
infile cards;
input FIELDID $ STATUS $ IDENT $;
cards;
Q3 IPR REC01
Q4 FTE REC04
Q3 FTI REC06
Q2 FTI REC07
Q2 FTI REC08

Q3 FTI REC08
Q4 FTI REC09
STAFF FTI REC09
Q1 FTI REC10
Q2 FTI REC10
Q3 FTI REC10
Q4 FTI REC10
Q1 FTI REC11
Q2 FTI REC11
Q3 FTI REC11
Q4 FTI REC11
Q2 FTI REC13
Q3 FTI REC13
;
/* call the donorimputation procedure */
proc DONORIMPUTATION
data=donordata
instatus=donorstat
out=donorout
outstatus=outstat
donormap=donormap
edits="Q1 + Q2 + Q3 + Q4 - TOTAL = 0;"
postedits="Q1 + Q2 + Q3 + Q4 - TOTAL <= 0;"
mindonors=1
pcentdonors=1
n=1
nlimit=1
mrl=0.5
random
eligdon=original
matchfieldstat
acceptnegative
;
id IDENT;
mustmatch STAFF;
dataexclvar TOEXCL;
by prov;
run;

Note
This document is a guide for the use of the procedure PROC DONORIMPUTATION. For more
information on the methodology, please see the Banff Functional Description document.

The ESTIMATOR Procedure

Overview
This procedure performs imputation by estimation. It imputes one variable at a time using a variety of
imputation estimators. Users may choose from twenty (20) pre-defined imputation estimator algorithms that are
hard-coded in the procedure, or may specify their own custom-defined algorithms (the terms "imputation
estimators" and "algorithms" are interchangeable). There are two types of algorithms available: estimator
functions and linear regression estimators. These algorithms may reference current and historical data.

Procedure Syntax
PROC ESTIMATOR <option(s)>;

ID variable;

DATAEXCLVAR variable

HISTEXCLVAR variable;

BY variable(s);

To do this Use this
statement

Identify the key variable of the input data sets ID
Identify the variable of the current input data set used to
exclude observations from the set of acceptable observation
when calculating parameters

DATAEXCLVAR

Identify the variable of the historical input data set used to
exclude observations from the set of acceptable observation
when calculating parameters

HISTEXCLVAR

Perform imputation for each BY group BY

PROC ESTIMATOR Statement
PROC ESTIMATOR <option(s)>;

To do this Use this option
Specify the current input data set DATA=
Specify the data set that contains the status of the current
input data set variables before imputation DATASTATUS=

Specify the historical input data set HIST=
Specify the data set that contains the status of the historical
input data set variables HISTSTATUS=

Specify the data set that contains the imputed data OUT=
Specify the data set that contains the status of the imputed OUTSTATUS=

data
Specify the data set that contains the random error report OUTRANDOMERROR=
Specify the data set that contains the report on imputation
statistics: estimator functions with or without parameter(s),
and linear regression estimators

OUTESTPARMS=

Specify the data set that contains the report on calculation
of averages: estimator functions (type EF with at least one
parameter)

OUTESTEF=

Specify the data set that contains the report on calculation
of « beta » coefficients: linear regression estimators (type
LR)

OUTESTLR=

Specify the data set that contains the report on acceptable
observations retained to calculate parameters by estimator:
estimator functions with at least one parameter and linear
regression estimator

OUTACCEPTABLE=

Specify the data set that contains the user defined
algorithms ALGORITHM=

Specify the data set that contains the estimator
specifications ESTIMATOR=

Specify the seed to the random number generator SEED=
Specify to verify the specifications without doing
imputation VERIFYSPECS

Specify that negative values are valid values ACCEPTNEGATIVE
Specify that negative values are invalid values REJECTNEGATIVE

Options
DATA=SAS-data-set

specifies the current input SAS data set. If BY variables are specified, the observations of this data
set must be sorted by the values of those variables. If DATA= is omitted, the most recently created
SAS data set is used.

DATASTATUS=SAS-data-set

specifies the SAS data set that contains the status of the current input data set variables before
imputation. This SAS data set is mandatory. Three character variables must be in this data set: "key
variable", FIELDID and STATUS. The "key variable" is the same as the one in the input SAS data set
and on the ID statement. FIELDID is the variable whose values are the names of the variables for which
a STATUS of FTI, FTE or I* is assigned (* represents DN for donor imputation, DE for deterministic
imputation, etc.).
If BY variables are specified: If all the BY variables specified are present on the DATASTATUS=
input data set, then the observations of this data set must be sorted by the values of the BY
variables.
Note: To increase the performance of the procedure, the BY variables should be in the
DATASTATUS= data set.

HIST=SAS-data-set

specifies the historical input SAS data set. This SAS data set is mandatory only if historical variables
are involved in one of the algorithms. Only observations that match on "key variable" with the DATA=
data set are kept. If BY variables are specified, the observations of this data set must be sorted by
the values of those variables.

HISTSTATUS=SAS-data-set

specifies the SAS data set that contains the status of the historical input data set variables before
imputation. This SAS data set is optional. If it is not specified but the HIST= data set is specified then
all historical values will be considered valid values.
If BY variables are specified: If all the BY variables specified are present on the HISTSTATUS=
input data set, then the observations of this data set must be sorted by the values of the BY
variables.
Note: To increase the performance of the procedure, the BY variables should be in the HISTSTATUS=
data set.
See DATASTATUS= for more details on this data set.

OUT=SAS-data-set

specifies the data set that contains the imputed data. Each observation contains the FIELDID variables
from the ESTIMATOR= data set that were imputed. If a BY statement is specified, then this data set
also contains the BY variables. If you want the OUT= data set to be permanent, specify a two-level
name.

OUTSTATUS=SAS-data-set

specifies the data set that contains the status of the imputed data. The status depends on the estimator
specifications, but it will start with a leading "I". The variables in this SAS data set are: "key variable",
FIELDID and STATUS. If a BY statement is specified, then this data set also contains the BY
variables. If you want the OUTSTATUS= data set to be permanent, specify a two-level name.

OUTRANDOMERROR=SAS-data-set

specifies the data set that contains the random error report. This SAS data set is optional. If this option
is not specified, no data set will be generated. If it is specified and no estimator adds a random error to
the imputed variable (by setting the RANDOMERROR variable in the ESTIMATOR= data set to “Y”),
an empty data set will be created. The variables in this SAS data set are:

ESTIMID Identification number of the estimator
ALGORITHMNAME The name of the algorithm
RECIPIENT Key of the recipient
DONOR Key of the donor
FIELDID The name of the imputed variable
RESIDUAL Original value of a donor - estimated value for the same observation
RANDOMERROR If algorithm type is LR and variance is used then it is equal to:

RESIDUAL* sqrt ((recipient variance ^ exponent) / (donor variance ^
exponent))
otherwise it is the same as RESIDUAL

ORIGINALVALUE The reported value of the variable
IMPUTEDVALUE The estimated value of the variable

OUTESTPARMS=SAS-data-set

specifies the output SAS data set that contains the report on imputation statistics by estimator (estimator
functions with or without parameters, and linear regression estimators). This information is similar to
the one written in the SAS log. This SAS data set is optional. If this option is not specified, no data set
will be generated. The variables in this SAS data set are:

ESTIMID Identification number for the estimator (begins with number 0)
type: numeric

ALGORITHMNAME The name of the algorithm
FIELDID The name of the variable to impute
FTI Number of imputations to do
IMP Number of imputations done with success

DIVISIONBYZERO Number of imputations failed because calculation implies a division by
0

NEGATIVE Number of imputations discarded because imputed value is negative
and option REJECTNEGATIVE is specified
Note: This variable is not shown if option ACCEPTNEGATIVE is
specified

OUTESTEF=SAS-data-set

specifies the output SAS data set that contains the report on the calculation of averages for estimator
functions (type EF with at least one parameter). This information is similar to the one written in the
SAS log. This SAS data set is optional. If this option is not specified, no data set will be generated. If
it is specified and no estimator function (type EF) has at least one parameter, an empty data set will be
created. The variables in this SAS data set are:

ESTIMID Identification number of the estimator function (type EF with at least
one parameter)
type: numeric

ALGORITHMNAME The name of the algorithm
FIELDID The name of the variable for which an average is calculated
PERIOD Current (C) or historical (H) period specific for the FIELDID variable

type: character (length = 1)
AVERAGE_VALUE Value of average of the variable
COUNT Number of acceptable observations used to calculate the average

The number of acceptable observations is the same in the calculation of
all averages present in the formula of one estimator.

OUTESTLR=SAS-data-set

specifies the output SAS data set that contains the report on the calculation of « beta » coefficients for
linear regression estimators (type LR). This information is similar to the one written in the SAS log.
This SAS data set is optional. If this option is not specified, no data set will be generated. If it is
specified and no linear regression is being performed (type LR), an empty data set will be created. The
variables in this SAS data set are:

ESTIMID Identification number of the linear regression estimator (type LR)
type: numeric

ALGORITHMNAME The name of the algorithm
FIELDID The name of the variable or regressor for which a beta coefficient is

calculated
EXPONENT Regressor exponent
PERIOD Current (C) or historical (H) period specific to the regressor

type: character (length = 1)
BETA_VALUE Value of « beta » coefficient associated with the regressor
COUNT Number of acceptable observations used to calculate the « beta »

coefficients
The number of acceptable observations is the same for all « beta »
coefficients present in the formula of one estimator identification

OUTACCEPTABLE=SAS-data-set

specifies the output SAS data set that contains the report on acceptable observations retained to calculate
the parameters for each estimator given in the specifications (estimator functions with at least one
parameter and linear regression estimators). This SAS data set is optional. If this option is not
specified, no data set will be generated. If it is specified and no estimator function with at least one
parameter (type EF) or no linear regression (type LR) is being performed, an empty data set will be
created. The variables in this SAS data set are:

ESTIMID Identification number for the estimator (type EF with at least one
parameter and type LR)
type: numeric

ALGORITHMNAME The name of the algorithm

«key variable» “Key” value of observation retained in parameter calculation for the
estimator

ALGORITHM=SAS-data-set

specifies the SAS data set that contains the user defined algorithms. This SAS data set is optional. If an
algorithm ALGORITHMNAME is the same as a predefined one, the predefined one will be replaced.

The following table describes the variables that must appear in the data set:

ALGORITHMNAME The name of the algorithm.
Mandatory

TYPE The type of the algorithm
2 types are possible: "EF" for estimator function and "LR" for linear
regression
Mandatory

STATUS A 1 to 3 character string that will be inserted in the OUTSTATUS=
status variable when a variable is estimated by this algorithm. This
string will be prefixed with "I" in the OUTSTATUS= data set.
Mandatory

FORMULA Holds the formula of the algorithm. The syntax of the formula is
dependent on the type of the algorithm.
Follow the links to see how to specify estimator function and linear
regression.
Only placeholders like AUX1 or FIELDID can be used in FORMULA.
Mandatory

DESCRIPTION A text to explain the purpose of the algorithm
Optional

ESTIMATOR=SAS-data-set

specifies the SAS data set that contains the estimator specifications. This SAS data set is mandatory.
The estimators will be processed in the order in which they appear in the data set.

The following table describes the variables of the data set:

ALGORITHMNAME The name of the algorithm. It can be a predefined algorithm or
one found in the ALGORITHM= data set.
Mandatory

FIELDID The name of the variable to be imputed. It must exist on the DATA=
data set.
Mandatory

AUXVARIABLES A comma separated list of variable names
These names are used to replace the placeholders in the FORMULA
variable of the ALGORITHM= data set or in the formula of the pre-
defined algorithms.
They must exist in the DATA= or HIST= data sets.
Note: The first variable name will replace AUX1 in the FORMULA
variable, the second, AUX2 and so on.

WEIGHTVARIABLE The name of the variable used as the weight variable
It is optional if the algorithm calculates a parameter, otherwise it must
be left blank.
For "EF" algorithms, the variable must exist on the DATA= and/or
the HIST= data set depending on the period of the average requested.
For "LR" algorithms, the variable must exist on the DATA= data set.

VARIANCEVARIABLE The name of the variable used as the variance variable
It is optional if the algorithm is of type "LR", otherwise it must be left
blank.
It must exist on the DATA= or HIST= data set depending on the value
of VARIANCEPERIOD.
Note: This variable and the next two variables concern LR algorithms
only. If VARIANCEVARIABLE is specified, the 2 others must be
specified.

VARIANCEEXPONENT A number indicating the power of the variance variable
VARIANCEPERIOD The period of the variance variable

Two periods are possible: "C" for current and "H" for historical
EXCLUDEIMPUTED A flag indicating whether observations with variables with STATUS

starting with "I*" (except "IDE") should be included in or excluded
from the set of acceptable observations.
2 choices are possible: "Y" to exclude variables with status "I*" and
"N" to include variables with status "I*".
It is mandatory when an algorithm is computing a parameter.
For algorithms not calculating parameters, it must be left blank.

EXCLUDEOUTLIERS A flag indicating whether observations with variables with
STATUS="FTE" should be included in or excluded from the set of
acceptable observations.
2 choices are possible: "Y" to exclude variables with status "FTE" and
"N" to include variables with status "FTE".
It is mandatory when an algorithm is computing a parameter.
For algorithms not calculating parameters, it must be left blank.

COUNTCRITERIA A positive integer indicating the minimum number of acceptable
observations needed in the current BY group in order for imputation
to be performed (on the current BY group).
It is mandatory when an algorithm is computing a parameter.
For algorithms not calculating parameters, it must be left blank.

PERCENTCRITERIA A real number between 0 and 100 (excluding 0 and 100) indicating
the minimum percentage of acceptable observations needed in the
current BY group in order for imputation to be performed (on the
current BY group).
It is mandatory when an algorithm is computing a parameter.
For algorithms not calculating parameters, it must be left blank.

RANDOMERROR A flag indicating whether a random error is added to the imputed
variable.
It is mandatory. 2 choices are possible: "Y" to add a random error and
"N" to not add a random error.
A warning will be printed if less than 5 observations are available for
the random choice of the error.

SEED=positive integer

this parameter is optional and is useful only in development when results need to be compared from one
run to the next. The default value is a random number. If a negative value, 0 or a value exceeding the
maximum acceptable by the platform is specified, it will be replaced by the default value.

VERIFYSPECS

specifies that the user only wants to verify the specifications. The procedure verifies the specifications,
it calculates parameters and it stops after printing them in the log window. Optional. If specified, the
user may use the _NULL_ data set for the output data sets. All the input data sets still have to be
specified.

ACCEPTNEGATIVE

if this option is specified, negative values will be considered valid values. They will be used in the
calculation of parameters and to impute variables.

REJECTNEGATIVE

if this option is specified, negative values will not be used in the calculation of parameters. Variables to
impute will not be imputed with negative values. If a variable involved in an estimator has a negative
value and does not have a corresponding FTI flag on the STATUS= data set, the observation will be
skipped.

NOTE: If neither ACCEPTNEGATIVE nor REJECTNEGATIVE is specified, the default value is
REJECTNEGATIVE.

ID Statement
ID variable;

Required argument

variable

specifies the variable that the procedure uses as the key variable of the input data set. It is mandatory. It
must be a character variable and only one is allowed (no composite key). DATA=, DATASTATUS=,
HIST= and HISTSTATUS= data sets must have this variable.

DATAEXCLVAR Statement
DATAEXCLVAR variable;

Required argument

variable

specifies the character variable that the procedure uses to exclude current and the corresponding
historical observations from the set of acceptable observations for computing parameters. When the
value of the variable identified by DATAEXCLVAR= is 'E' the observation is not used to compute
parameters. Even if the parameters to calculate involve only historical data (that’s possible only in EF
algorithms), the DATAEXCLVAR will be used to restrict the pool of acceptable records. This
statement is optional.

NOTE : This character variable must be created prior to calling PROC ESTIMATOR and it must be
added to the DATA= input SAS data set. (See example)

HISTEXCLVAR Statement
HISTEXCLVAR variable;

Required argument

variable

specifies the character variable that the procedure uses to exclude historical and the corresponding
current observations from the set of acceptable observations for computing parameters. When the value
of the variable identified by HISTEXCLVAR= is 'E' the observation is not used to compute parameters.
Even if the parameters to calculate involve only current data, the HISTEXCLVAR will be used to
restrict the pool of acceptable records. This statement is optional.

NOTE : This character variable must be created prior to calling PROC ESTIMATOR and it must be
added to the HIST= input SAS data set. (See example)

BY Statement
BY variable-1 ... variable-n;

Required arguments

Variable(s)

specifies the variable(s) that the procedure uses to form BY groups. The variable(s) must exist on both
the DATA= and the HIST= data sets. Imputation will be performed on each group independently. You
can specify more than one variable. This statement is optional.

Predefined algorithms
A set of predefined algorithms has been provided. See the document on pre-defined algorithms.

Details

• All sorting of variables must be done in ascending order.
• If BY variables are specified, the observations of the DATA= and HIST= data sets must be sorted

by the values of those variables.
• If BY variables are specified then: If all the BY variables specified are present on the

DATASTATUS= data set, then the data set must be sorted by the values of those BY variables.
Note: to increase the performance of the procedure, the BY variables should be on the
DATASTATUS= data set.

• If BY variables are specified, the BY variables will appear in the OUT= and OUTSTATUS= data sets,
and in the 5 output data sets described as “report”.

• The same applies to the HISTSTATUS= data set. The BY variables can be on either one, or both of the
input status data sets.

• Observations with a missing value for the key variable in the input data sets will not be processed. A
warning message will be entered in the log file with a counter for the number of observations dropped.

• Observations with a valid value for the key variable in the input data set but with missing values in this
data set for one or more variables specified in the estimator specifications without the status 'FTI' for
these fieldids in the STATUS= data set will not be processed. A warning message will be entered in the
log file with a counter for the number of observations dropped.

• If the option REJECTNEGATIVE is in effect, observations with a valid value for the key variable in the
input data set but with negative values in this data set for one or more variables specified in the
estimator specifications without the status 'FTI' for these fieldids in the STATUS= data set will not be
processed. A warning message will be entered in the log file with a counter for the number of
observations dropped.

• If the option REJECTNEGATIVE is in effect, fields to impute will not be imputed with negative values.
• Observations with a missing value for the key variable or a missing value for FIELDID in the STATUS=

data set will not be processed. A warning message will be entered in the log file with a counter for the
number of observations dropped.

• Any weight variables with missing or negative values or with a status in the DATASTATUS or
HISTSTATUS data sets will cause the procedure to stop.

• Any variance variables with missing, negative or zero (0) values or with a status in the DATASTATUS
or HISTSTATUS data sets will cause the procedure to stop.

• Τhe DATAEXCLVAR and HISTEXCLVAR statements can use the same variable name for the
exclusion variable.

• A variable cannot be specified in more than one of the following statements: ID statement, BY
statement, DATAECLVAR and HISTEXCLVAR statements and in the estimator specifications (weight
variable, variance variable, field to impute, auxiliary variable, etc.). These lists of variables are mutually
exclusive.

• Variables with an "IDE" status in the DATASTATUS data set are considered as having original values
(not previously imputed).

• The ACCEPTNEGATIVE and REJECTNEGATIVE options are mutually exclusive. Specifying both
will cause the procedure to stop.

Example 1

With option “acceptnegative” and report “outrandomerror”

data currentdata;
infile cards;
input ident $ x prov;
cards;
REC01 -500 24
REC02 750 24
REC03 -400 24
REC04 1000 24
REC05 1050 24
REC06 500 24
REC07 400 30
REC08 950 30
REC09 1025 30
REC10 -800 30
REC12 10000 30
REC13 500 24
REC14 750 24
REC15 400 24
REC16 -1000 24
REC17 1050 24
REC18 500 24
REC19 -400 30
REC20 950 30
REC21 -1025 30
REC22 800 30
REC23 10000 30
;
run;

/* Create the historical data set*/
data histdata;
infile cards;
input IDENT $ X prov;
cards;
REC01 500 24
REC02 -750 24
REC03 400 24
REC05 870 24
REC06 500 24
REC07 400 30
REC08 950 30
REC09 950 30
REC10 -800 30
REC11 800 30
REC12 500 24

REC13 750 24
REC14 -400 24
REC15 870 24
REC16 500 24
REC17 -400 30
REC18 950 30
REC19 950 30
REC20 800 30
REC21 800 30
;
run;

/* Create the status file for the current data set*/
/* This data set can also be created by running */
/* PROC ERRORLOC on the current data set with the */
/* edit x>0 */
data currstatus;
input ident $ fieldid $ status $;
cards;
REC01 x FTI
REC03 x FTI
REC10 x FTI
REC16 x FTI
REC19 x FTI
REC21 x FTI
;
run;

/* Create the status file for the historical data set*/
/* This data set can also be created by running */
/* PROC ERRORLOC on the historical data set with the */
/* edit x>0 */
data histstatus;
input ident $ fieldid $ status $;
cards;
REC02 X FTI
REC10 X FTI
REC14 X FTI
REC17 X FTI
;
run;

/* Create an exclusion variable called CURRDATAEXCL */
/* to be used with the DATAEXCLVAR statement */
/* of PROC ESTIMATOR */
data currentdata;
set currentdata;
if (x > 2000) then
CURRDATAEXCL='E';
else
CURRDATAEXCL='';
run;

/* Create an exclusion variable called HISTDATAEXCL */
/* to be used with the HISTEXCLVAR statement */
/* of PROC ESTIMATOR */
data histdata;
set histdata;
if (x > 1000) then
HISTDATAEXCL='E';
else
HISTDATAEXCL='';
run;

/* Here we define our own algorithm which redefines */
/* a predefined algorithm */
data algorithm;
length algorithmname $ 8;
length type $ 2;
length status $ 2;
length formula $ 30;
length formula $ 30;
algorithmname='prevalue';
type='ef';
status='vp';
formula='fieldid(h,v)';
description='Previous value is imputed.';
run;

/* Here we create the data set that contains the imputation */
/* strategy. The estimators will be processed in the order in which */
/* they appear in the data set. */
data estimator;
length est_setid $ 4;
length algorithmname $ 8;
length excludeimputed $ 1;
length excludeimputed $ 1;
length randomerror $ 1;
length countcriteria 8;
length percentcriteria 8;
length weightvariable $ 15;
length variancevariable $ 15;
length varianceperiod $ 1;
length varianceexponent 8;
length fieldid $ 15;
length auxvariables $ 45;
est_setid='set1';
excludeimputed='y';
excludeoutliers='y';
randomerror='y';
algorithmname='prevalue';
fieldid='x';
output;
est_setid='set1';
excludeimputed='y';
excludeoutliers='y';
randomerror='y';
countcriteria=1;
percentcriteria=1;
algorithmname='curmean';
fieldid='x';
output;
est_setid='set2';
excludeimputed='n';
excludeoutliers='n';
randomerror='y';
countcriteria=1;
percentcriteria=1;
algorithmname='diftrend';
fieldid='x';
output;
est_setid='set2';
excludeimputed='y';
excludeoutliers='y';
randomerror='y';
countcriteria=1;

percentcriteria=1;
algorithmname='histreg';
fieldid='x';
output;
run;

/* Sort the data set and call PROC ESTIMATOR */
proc sort data=currentdata; by prov ident; run;
proc sort data=histdata; by prov ident; run;

proc estimator
data=currentdata
datastatus=currstatus
hist=histdata
algorithm=algorithm
estimator=estimator (where=(est_setid='set1'))
out=outdata
outstatus=outstatus
outrandomerror=outrandomerror
acceptnegative;
id ident;
dataexclvar CURRDATAEXCL;
histexclvar HISTDATAEXCL;
by prov;
run;

Example 2

With option “rejectnegative” (default value) and the 4 output reports “outestparms,
outestef, outestlr and outacceptable”

proc estimator
data=currentdata
datastatus=currstatus
hist=histdata
algorithm=algorithm
estimator=estimator (where=(est_setid='set2'))
out=outdata
outstatus=outstatus
outrandomerror=outrandomerror
outestparms=outestparms
outestef=outestef
outestlr=outestlr
outacceptable=outacceptable
;
id ident;
dataexclvar CURRDATAEXCL;
histexclvar HISTDATAEXCL;
by prov;
run;

Note
This document is a guide for the use of the procedure PROC ESTIMATOR. For more information on
the methodology, please see the Banff Functional Description document.

The PRORATE Procedure

Overview
This procedure processes the data by applying the prorating edit rules to the related values and raking them,
with rounding, if needed. The raking will balance a summation by distributing the differential with the
expected total across the summation components based on a specific weight associated with each of the
components and only on components which might be changeable.

Procedure Syntax
PROC PRORATE <option(s)>;

ID variable;

BY variable(s);

To do this Use this statement
Identify the key variable of the input data set ID
Perform prorating for each BY group BY

PROC PRORATE Statement
PROC PRORATE <option(s)>;

To do this Use this option
Specify the input data set DATA=
Specify the SAS data set that contains the status of the fields
before prorating INSTATUS=

Specify the SAS data set that contains the prorated data OUT=
Specify the SAS data set that contains the status of the fields
(IPR) after prorating OUTSTATUS=

Specify the SAS data set that contains the rejected
observations OUTREJECT=

Specify the prorating edits EDITS=
Specify the number of decimals used in the rounding
algorithm DECIMAL=

Specify the lower bound used to verify the prorating ratio LOWERBOUND=
Specify the upper bound used to verify the prorating ratio UPPERBOUND=
Specify the global variable modifier MODIFIER=
Specify that the procedure only verify the EDITS VERIFYEDITS
Specify the method of prorating METHOD=
Specify that negative values are valid values ACCEPTNEGATIVE
Specify that negative values are invalid values REJECTNEGATIVE

Options
DATA=SAS-data-set

specifies the input SAS data set. The observations of this data set must be sorted by the values of
the key variable specified on the ID statement. If BY variables are specified, the observations of
this data set must also be sorted by the values of those variables. When sorting, the BY variables
must be listed before the ID variable. If DATA= is omitted, the most recently created SAS data set is
used.

NOTE: In the EDITS, the first letter of any MODIFIER (A, I, N, O) cannot be used as a variable name.
The full word for the modifier however, can be used (i.e. ALWAYS is a valid variable name, but A is
not).

INSTATUS=SAS-data-set

specifies the SAS data set that contains the status of the fields before prorating. Three character
variables must be in this data set: "key variable", FIELDID and STATUS. The "key variable" is the
same as the one specified for the input SAS data set with the ID statement. FIELDID is the variable
whose values are the names of the variables for which a STATUS has been assigned by other imputation
processes before prorating. A FIELDID is considered as imputed if the first letter of STATUS is 'I'
(except for IDE). If INSTATUS= is omitted or is _NULL_, and at least one modifier is ORIGINAL or
IMPUTED, an error will be generated and the procedure will stop.

If BY variables are specified: If all the BY variables specified are present on this data set, then the
observations of this data set must be sorted by the values of those variables as well as by the values
of the ID variable. When sorting, the BY variables must be listed before the ID variable.
If not all the BY variables specified are present on this data set, then the observations need only be
sorted by the values of the ID variable.
Note: To increase the performance of the procedure, the BY variables should be in this data set.

If a variable has a status of FTI, its value will be processed as an original value.

OUT=SAS-data-set

names the output data set that contains the prorated observations. Each observation contains the
EDITS= variables where at least one variable has been prorated. If you specify the VERIFYEDITS
option, specify _NULL_ for this dataset, otherwise an empty dataset will be created. If a BY statement
is specified, this data set also contains the BY variables. If you want the OUT= data set to be
permanent, specify a two-level name.

OUTSTATUS=SAS-data-set

names the output data set that contains the fieldids of the variables that were successfully prorated, with
status equal to IPR. The variables in this SAS data set are: "key variable", FIELDID and STATUS. If
you specify the VERIFYEDITS option, specify _NULL_ for this dataset, otherwise an empty dataset
will be created. If a BY statement is specified, then this data set also contains the BY variables. If you
want the OUTSTATUS= data set to be permanent, specify a two-level name.

OUTREJECT=SAS-data-set

names the output data set that contains the observations for which prorating could not be performed.
The variables created in this data set are: "key variable", NAME_ERROR, TOTAL_NAME, FIELDID
and RATIO_ERROR. If you specify the VERIFYEDITS option, specify _NULL_ for this dataset,
otherwise an empty dataset will be created. If a BY statement is specified, then this data set also
contains the BY variables. If you want the OUTREJECT= data set to be permanent, specify a two-level
name.

The following table describes the types of errors:

NAME_ERROR Description
DECIMAL ERROR The user has specified fewer decimal places than exist

in the adjusted total.
SCALING VALUE K GREATER
THAN +1

Only for “scaling method”.
The acceptable interval for factor “k” is: -1 <= k <= +1
(Please refer to the Banff Functional Description for
more information)

SCALING VALUE K LESS THAN -
1

Only for “scaling method”.
The acceptable interval for factor “k” is: -1 <= k <= +1
(Please refer to the Banff Functional Description for
more information)

NOTHING TO PRORATE No variables are left to prorate; they have all been
eliminated because the modifier does not identify the
variables as proratable (taking into account their status
in INSTATUS= if the modifier is O or I) or their value
is 0.

OUT OF BOUNDS The rounded value divided by the original value is not
within the interval defined by the bounds.

SUM OF PRORATABLE
COLUMNS IS 0

The factor "k" cannot be calculated because the
weighted sum of the proratable columns is 0.
(Please refer to the Banff Functional Description for
more information)

NEGATIVE VALUE IN DATA A variable has a negative value and option
REJECTNEGATIVE is specified.

For every type of error, the variable name of the total is reported under TOTAL_NAME. If the error is
"OUT OF BOUNDS ", the variable name where it occurs is reported under FIELDID and the out of
bounds ratio is reported under RATIO_ERROR.

EDITS=quoted string of all edits

specifies the prorating edit rules. They must be enclosed in quotes and end with semi-colons. They are
mandatory. The edits may be entered in any order. Parts of sums and subtotals can be nested to an
unlimited degree in leading to an overall fixed total. It is possible to specify weights for every field
involved in a summation. In this way the relative amount of change of each field due to pro-rating may
be controlled, change being inversely proportional to the weight given. Weights are applied at the
variable level; i.e., the same weight applies across all records for that variable. The weights are positive
numbers and are specified before the variable name. (See example). It is important to note that the
EDITS are used to tell the procedure which variables from the DATA= dataset will be processed. Only
one prorating group can be processed at a time.

DECIMAL=positive integer

specifies the number of decimals used in the rounding algorithm. Must be a positive integer between 0
and 9 inclusively. Optional. Default value is 0. The number of decimals specified must be equal to or
greater than the actual number of decimals found on the total.

LOWERBOUND=real number

specifies the lower bound used to verify that the rounded value divided by the original value is within
the interval. May be any value. Must be lower than the value specified as UPPERBOUND. Optional.
If omitted, the lower limit is zero.

If the basic method of prorating is used, the lower bound may be any value if ACCEPTNEGATIVE
option is specified, but must be greater than or equal to zero if REJECTNEGATIVE option is specified
(see options METHOD= and ACCEPTNEGATIVE / REJECTNEGATIVE below). If the scaling
method is used, the lower bound must be greater than or equal to zero whether ACCEPNEGATIVE or
REJECTNEGATIVE is specified. The value of this limit must always be lower than the value specified
as UPPERBOUND.

UPPERBOUND=real number

specifies the upper bound used to verify that the rounded value divided by the original value is within
the interval. May be any value. Must be greater than the value specified as LOWERBOUND.
Optional. If omitted, the upper limit is the highest numeric value possible (for the operating system).

If the basic method of prorating is used, the upper bound may be any value. If the scaling method is
used, the upper bound must be greater than or equal to zero (see option METHOD= below). The value
of this limit must always be greater than the value specified as LOWERBOUND.

MODIFIER=keyword

specifies the global modifier to use if none is given for a variable in an edit. Uppercase or lowercase.
Optional. Default value is ALWAYS.

MODIFIER
(uppercase or lowercase
accepted)

Description

ALWAYS or A Always change original and/or previously imputed data
IMPUTED or I Change previously imputed data only
NEVER or N Never change the data
ORIGINAL or O Change only original data

VERIFYEDITS

specifies that the user only wants to verify the EDITS. The procedure stops after printing them in the
log. Optional. If omitted, the procedure does not stop after the printing. If specified, the user may use
the _NULL_ data set for the three output data sets and the INSTATUS= data set, but not for the input
DATA= dataset.

METHOD=keyword

specifies the method the user wants to use for prorating. Uppercase or lowercase accepted. Optional.
Default value is BASIC.

METHOD
(uppercase or lowercase
accepted)

Description

BASIC or B Use the basic method of prorating. When this method
is used, the signs of some variables may change during
the prorating process.

SCALING or S Use the "scaling method" of prorating. When this
method is used, the signs of variables can never
change, so that negative values will always remain
negative, and positive values will always remain
positive.

ACCEPTNEGATIVE

if this option is specified, negative values will be considered valid values. Therefore it will be possible
to prorate a variable with a negative value.

REJECTNEGATIVE

if this option is specified, it will not be possible to prorate a variable with a negative value. An
observation with a negative value for an edit variable will not be processed and will be added in the
OUTREJECT= output data set. A warning message will also be entered in the log file with a counter for
the number of observations dropped.

NOTE: If neither ACCEPTNEGATIVE nor REJECTNEGATIVE is specified, the default value is
REJECTNEGATIVE.

ID Statement
ID variable;

Required argument

variable

specifies the variable that the procedure uses as the key variable of the input data set. It is mandatory. It
must be a character variable and only one is allowed (i.e. no composite key).

BY Statement
BY variable-1 ... variable-n;

Required arguments

Variable(s)

specifies the variable(s) that the procedure uses to form BY groups. Prorating is performed on one
observation at a time. So specifying BY variables will not influence the results. However, the BY
variables will appear in the three output data sets. You can specify more than one variable. This
statement is optional.

Details

• The sorting of variables must be done in ascending order of the values.
• If BY variables are specified, the observations of the DATA= input data set must be sorted by the

values of those variables, and by the values of the ID variable; when sorting the BY variables
must be listed before the ID variable.

• If BY variables are specified: If all the BY variables specified are present on the INSTATUS=
input data set, then the observations of this data set must be sorted by the values of those variables
as well as by the values of the ID variable. When sorting, the BY variables must be listed before
the ID variable.

• If not all the BY variables specified are present on the INSTATUS= input data set, then the
observations need only be sorted by the ID variable.
Note: To increase the performance of the procedure, the BY variables should be in the INSTATUS=
data set.

• If BY variables are specified, the BY variables specified will appear in the OUT=, OUTSTATUS= and
OUTREJECT= data sets.

• Observations with a missing value for the key variable in the input data set DATA= will not be
processed. A warning message will be entered in the log file with a counter for the number of
observations dropped.

• Observations with a missing value for the key variable or missing value for FIELDID in the input data
set INSTATUS= will not be processed. A warning message will be entered in the log file with a counter
for the number of observations dropped.

• A missing value for an edit variable in the input data set DATA= will be processed as 0 and will
reappear as missing in the output data set OUT=.

• Variables with an "IDE" status in the INSTATUS data set are considered as having original values (not
previously imputed).

Example 1

Verify the prorating edits only.

options linesize=80 pagesize=32000;
%let proratingedits="
Q1:A+Q2:I+Q3:n+Q4:o=YEAR;
M1+M2+M3=Q1;
";
data proratedata(drop=n);
n = 1;
do while (n <= 10);
IDENT = 'R' || put (n, Z2.);
M1 = round ((10 + rannor (1)) / 3);
M2 = round ((10 + rannor (1)) / 3);

M3 = round ((10 + rannor (1)) / 3);
Q1 = round (10 + rannor (1) / 4);
Q2 = round (10 + rannor (1) / 4);
Q3 = round (10 + rannor (1) / 4);
Q4 = round (10 + rannor (1) / 4);
YEAR = 40;
output;
n = n + 1;
end;
run;
proc prorate
data=proratedata
edits=&proratingedits
verifyedits
;
id ident;
run;

Example 2

Perform prorating using the modifier specified in the edits, and for variables without a
modifier, prorate only if the variable has been previously imputed (modifier = imputed).
Reject negative data.

options linesize=80 pagesize=32000 nodate;
%let proratingedits="
Q1:A+Q2:I+Q3:n+Q4:o=YEAR;
M1+M2+M3=Q1;
";

data proratedata(drop=n);
n = 1;
do while (n <= 10);
IDENT = 'R' || put (n, Z2.);
M1 = round ((10 + rannor (1)) / 3);
M2 = round ((10 + rannor (1)) / 3);
M3 = round ((10 + rannor (1)) / 3);
Q1 = round (10 + rannor (1) / 4);
Q2 = round (10 + rannor (1) / 4);
Q3 = round (10 + rannor (1) / 4);
Q4 = round (10 + rannor (1) / 4);
YEAR = 40;
if mod(n,3)=0 then ZONE=1; else ZONE=2;
if mod(n,10)=0 then Q1=-Q1; /* negative data */
output;
n = n + 1;
end;
run;
data proratestatus;
infile datalines delimiter=',';
input ident $ Fieldid $ Status $;
datalines;
R01,M1,IDN
R01,M3,IDN
R02,M1,IPV
R05,M1,IDN
R05,Q3,IDN
R07,M3,IPV
R08,M1,IPV

R09,M2,IDN
R10,M1,IPV
R10,Q1,IPV
;
run;
proc sort data=proratedata; by zone ident; run;
proc prorate
data=proratedata
instatus=proratestatus
out=pro_outdata
outstatus=pro_outstatus
outreject=pro_rejected
edits=&proratingedits
method = scaling
decimal = 1
lowerbound = 0.1
upperbound = 1.1
modifier = imputed
rejectnegative
;
id ident;
by zone;
run;

Example 3

Compare handling of negative values (acceptnegative) by the two methods of prorating
First run PROC PRORATE with the example below and then rerun by replacing method
= BASIC with method = SCALING and setting lowerbound = 0.0. Note that there is no
instatus= dataset, since all variables have the default modifier=A.

options linesize=80 pagesize=32000 nodate;
%let proratingedits="
Q1+4Q2+2Q3+Q4=YEAR;
";
data proratedata;
infile datalines delimiter=',';
input ident $ Q1 Q2 Q3 Q4 YEAR;
datalines;
R01,-25,42,27,25,40
R02,-25,44,20,20,40
R03,-18,44,15,5,40
R04,-18,42,15,5,40
R05,12,30,15,5,40
R06,12,20,10,5,40
run;
proc prorate
data=proratedata
out=pro_outdata
outstatus=pro_outstatus
outreject=pro_rejected
edits=&proratingedits
method = BASIC
decimal = 1
lowerbound = -100.0 /* set to 0.0 for method = SCALING */
upperbound = 100.0
modifier = always
acceptnegative
;

id ident;
run;

Notes
This document is a guide for the use of the procedure PROC PRORATE. For more information on the
methodology, please see the Banff Functional Description document.

The MASSIMPUTATION Procedure

Overview
For operational reasons, in some surveys, detailed information is collected only for a subsample (or second
phase sample) of units selected randomly from a large first phase sample. Classical estimates based on the
subsample require the derivation of subsampling weights. The derivation of such weights can be quite complex.
An alternative technique is known as 'mass imputation' where a complete rectangular file is created for the
entire first phase sample units by donor imputing the missing information for the nonsampled units. In a typical
edit and imputation scenario, the objective is to determine whether a record contains incorrect, missing,
inconsistent or outlying responses; the pattern of failure is assumed to be different for each record. In the case
of mass imputation, however, the records which require imputation are known and the fields to be imputed are
both known and identical for all records. Also, it is assumed that the set of core information collected from the
entire sample and the extra items collected from the subsample have already been edited and imputed and that
no consistency edits need to be applied, either to the individual sections or between two sections of the
questionnaires.

This procedure performs massive imputation using a nearest neighbour approach to find a valid observation that
is most similar to the one which needs imputation, without searching for "system matching fields" as PROC
DONORIMPUTATION does, but using only the "user matching fields". In the case where no "user matching
fields" are specified, a random selection of the donor will be performed. No post imputation edits are needed
since the first nearest neighbour found will be kept for imputation.

An observation requiring imputation is called a recipient. A recipient is an observation for which all variables
to impute are missing on the input data set.

A valid observation is called a donor. A donor does not have any missing values for variables defined as the
ones to impute.

Procedure Syntax
PROC MASSIMPUTATION <options(s)>;

ID variable;

MUSTIMPUTE variable(s);

MUSTMATCH variable(s);

BY variable(s);

To do this Use this statement
Identify the key variable of the input data set ID
Specify field(s) to impute MUSTIMPUTE
Specify user defined matching field(s) MUSTMATCH
Perform imputation for each BY group BY

PROC MASSIMPUTATION Statement
PROC MASSIMPUTATION <option(s)>;

To do this Use this option
Specify the input data set DATA=
Specify the SAS data set that contains the imputed data OUT=
Specify the SAS data set that contains the mapping of
donor/recipient identifiers DONORMAP=

Specify the minimum number of donors required to perform
imputation MINDONORS=

Specify the minimum percentage of donors required to
perform imputation PCENTDONORS=

Specify to use random selection of donors for recipients
without matching fields RANDOM

Specify the root to the random number generator SEED=
Specify that negative values are valid values ACCEPTNEGATIVE
Specify that negative values are invalid values REJECTNEGATIVE
Specify the maximum number of times a donor can be used NLIMIT
Specify the multiplier for ratio limit, in order to limit the
number of times a donor can be used MRL

Options
DATA=SAS-data-set

specifies the input SAS data set. The variables required are the "key variable", and all the variables
listed on the MUSTIMPUTE statement and on the MUSTMATCH statement. The "key variable" must
be the same as the one specified in the ID statement. If BY variables are specified, the observations
of this data set must be sorted by the values of those variables. If DATA= is omitted, the most
recently created SAS data set is used.

OUT=SAS-data-set

names the output data set that contains the identifiers of recipients that have been imputed and the
imputed values for the variables listed on the MUSTIMPUTE statement. If a BY statement is specified,
then this data set also contains the BY variables. If you want the OUT= data set to be permanent,
specify a two-level name.

DONORMAP=SAS-data-set

names the output data set that contains the identifiers of recipients that have been imputed along with
their donor identifier and the number of donors tried. This number will be one (1) if the donor was
found by the nearest neighbour method or zero (0) if it was found randomly. If a BY statement is
specified, then this data set also contains the BY variables. If you want the DONORMAP= data set to
be permanent, specify a two-level name.

MINDONORS=positive integer

represents the minimum number of donors needed in the current BY group in order for imputation to be
performed (on the current BY group). This number is optional and has a default of 30.

PCENTDONORS=real number

represents the minimum percentage of donors needed in the current BY group in order for imputation to
be performed (on the current BY group). This number is optional and has a default of 30.0.

RANDOM

optional. If this option is specified with the MUSTMATCH statement, then random selection will be
applied to recipients with missing values for all MUSTMATCH fields (and/or all negative if the
REJECTNEGATIVE option is in effect). If this option is specified without the MUSTMATCH
statement, then random selection will be applied to all recipients, without using the nearest neighbour
method. If this option is not specified but the MUSTMATCH statement is specified, no random
selection will be applied to recipients with missing values (and/or negative if REJECTNEGATIVE is
specified) for all MUSTMATCH fields.

SEED=positive integer

this parameter is optional and is useful only in development when results need to be compared from one
run to the next. The default value is a random number. If a negative value, 0 or a value exceeding the
maximum acceptable by the platform is specified, it will be replaced by the default value.

ACCEPTNEGATIVE

if this option is specified, negative values will be considered valid values. Therefore it will be possible
to impute a variable with a negative value.

REJECTNEGATIVE

if this option is specified, negative values will not be considered valid and it will not be possible to
impute a variable with a negative value.

NOTE: If neither ACCEPTNEGATIVE nor REJECTNEGATIVE is specified, the default value is
REJECTNEGATIVE.

NLIMIT=positive integer

if this option is specified, it will limit the number of times a donor can be used. NLIMIT and MRL are
optional parameters used to calculate DONORLIMIT. One or both can be specified. When both are
speficied, DONORLIMIT takes the rounded up maximum value between NLIMIT and the ratio using
the MRL. If NLIMIT and MRL are omitted, the number of times a donor can be used is unlimited.

MRL=positive real number

if this option is specified, it will limit the number of times a donor can be used. The MRL (multiplier
ratio limit) is multiplied by the ratio of the number of recipients to donors. NLIMIT and MRL are
optional parameters used to calculate DONORLIMIT. One or both can be specified. When both are
specified, DONORLIMIT takes the rounded up maximum value between NLIMIT and the ratio using
the MRL. If NLIMIT and MRL are omitted, the number of times a donor can be used is unlimited.

ID Statement
ID variable;

Required argument

variable

specifies the variable that the procedure uses as the "key variable" of the input data set. It is mandatory.
It must be a character variable and only one is allowed (no composite key).

MUSTIMPUTE Statement
MUSTIMPUTE variable-1 ... variable-n;

Required arguments

variables

specifies the variable(s) to be imputed. The procedure uses these variables to define an observation as
being a recipient or a potential donor on the input data set. To be a recipient, all the variables listed on
the MUSTIMPUTE statement must be missing for an observation. To be a potential donor, all the
variables of an observation listed on the MUSTIMPUTE statement must have non missing values (and
non negative values if REJECTNEGATIVE is specified). This statement is mandatory.

MUSTMATCH Statement
MUSTMATCH variable-1 ... variable-n;

Required arguments

variables

specifies the variable(s) that the procedure uses as "user matching fields". This statement is optional. If
no statement is given, option RANDOM must be specified and a donor will be selected randomly for
each recipient.

NOTE: The "user matching fields" variables are matching fields that apply to ALL recipients. The
system does not search for "system matching fields" specific to each recipient.

BY Statement
BY variable-1 ... variable-n;

Required arguments

Variable(s)

specifies the variable(s) that the procedure uses to form BY groups. Imputation will be performed on
each group independently. You can specify more than one variable. This statement is optional.

Details

• The sorting of variables must be done in ascending order of the values.
• If BY variables are specified, the observations of the DATA= input data set must be sorted by the

values of those variables.
• If BY variables are specified, the BY variables specified will appear in the OUT= and DONORMAP=

data sets.
• Observations with a missing value for the key variable in the input data set will not be processed. A

warning message will be entered in the log file with a counter for the number of observations dropped.
• Observations with a valid value for the key variable in the input data set but with missing values for at

least one variable but not all variables specified on the MUSTIMPUTE statement will not be processed.
A warning message will be entered in the log file with a counter for the number of observations
dropped.

• Donor observations with a valid value for the key variable and valid values for all variables specified on
the MUSTIMPUTE statement but with at least one missing value for MUSTMATCH variables, if this last
statement is specified, will not be processed. A donor must have all valid values for the "user matching
fields". A warning message will be entered in the log file with a counter for the number of observations
dropped.

• If the REJECTNEGATIVE option is in effect, donor observations with a valid value for the key variable
in the input data set but with negative values for one or more variables specified on the MUSTIMPUTE
or MUSTMATCH statements will not be processed. A warning message will be entered in the log file
with a counter for the number of observations dropped.

• A variable cannot be specified in more than one ID, BY, MUSTIMPUTE and MUSTMATCH
statement. These lists of variables are mutually exclusive.

• The ACCEPTNEGATIVE and REJECTNEGATIVE options are mutually exclusive. Specifying both
will cause the procedure to stop.

• If the NLIMIT or the MRL option is in effect, details will be entered in the log file with regards to the
ratio of donors that have reached DONORLIMITj for each group.

• If the NLIMIT or MRL option is in effect, DONORLIMIT data will be added to the DONORMAP=
dataset. When these parameters are omitted, the DONORLIMIT variable will remain empty in the
DONORMAP= dataset.

• When limiting donors with the NLIMIT option, the number of remaining donors may end up being less
than MINDONORS. In such a case, the procedure will continue and ignore MINDONORS which was
validated at the beginning. The same applies for PCENTDONORS.

Example
data massimpdata;
infile cards;
input IDENT $ TOTAL Q1 Q2 Q3 Q4 STAFF;
cards;
REC01 500 100 125 125 150 1000
REC02 750 200 170 130 250 2000

REC03 400 80 90 100 130 1000
REC04 1000 150 250 350 250 2000
REC05 3000 500 500 1000 1000 1000
REC06 800 200 225 200 175 2000
REC07 600 125 150 175 150 1000
REC08 900 175 200 225 300 2000
REC09 2500 500 650 600 750 1000
REC10 800 150 175 225 250 2000
REC21 3000 -45 -50 75 -234 2000
REC11 575 1000
REC12 850 2000
REC13 375 1000
REC14 1100 2000
REC15 3100 1000
REC16 750 2000
REC17 675 1000
REC18 875 2000
REC19 4000 1000
REC20 2000
;
/* sort the input data set by the STAFF and IDENT variables.*/

proc sort data=massimpdata;
by STAFF IDENT;
run;

proc massimputation
data=massimpdata
out=outdata
donormap=donormap
mindonors=1
pcentdonors=1
random
acceptnegative
;
id IDENT;
mustimpute Q1 Q2 Q3 Q4;
mustmatch TOTAL;
by STAFF;
run;

Note
This document is a guide for the use of the procedure PROC MASSIMPUTATION. For more
information on the methodology, please see the Banff Functional Description document.

Writing Linear Edits

Rules
The rules for writing edits are as follows:

editlist:
 edit
 edit editlist

edit:
 componentlist operator componentlist ;
 modifier : componentlist operator componentlist ;

componentlist:
 component
 component + componentlist
 component - componentlist

component:
 - component
 number
 number * variable
 variable
 variable * number

modifier:
 one of ACCEPTE | FAIL | PASS | REJET

operator:
 one of > | >= | = | != | <= | <

variable:
 letter followed by list of letters | digits | underscore

From these rules we can say that:

• An editlist is made up of one or more edits.
• An edit starts optionally with a modifier followed by a colon (:), followed by a componentlist,

followed by an operator, followed by a componentlist and terminated by a semi-colon (;).
• A componentlist is made up of or one more components. The components are separated by a plus (+)

or a minus (-) sign.
• A component starts optionally with a minus (-) sign followed by a number and/or a variable (they can

be in any order). When a component has a number and a variable they must be separated by an asterisk
(*).

• If not specified, the default modifier value is PASS.

Examples of editlist:

EDITLIST NOTE

x1 + x2 = 3000 ; Spaces can be inserted as desired
x1>=5; Spaces can be eliminated
x1 +x2 + x3 = 1500;
100 <= x3 - 3.5 * x4; Constant can appear on left side of equation
FAIL: x1 != 400; Inequality is permitted, but only with a FAIL modifier
PASS: x1 != 400; Invalid editlist
PASS: x2 = 500; Equality is permitted, but only with a PASS modifier
FAIL: x2 = 500; Invalid editlist
Pass: x2 > 37; Modifier can be specified in lower case

Editlist
An editlist can contain any number of edits.

Edit
An edit must be a linear equation. (e.g. no exponents to variables and no division operator)

Modifier
Valid values are ACCEPTE, FAIL, PASS and REJET. If no value is specified, the modifier will default to
PASS.

Variable
The variable must be a valid variable name found on the input data set. In Banff an underscore (_) is not valid
as the first character of a variable name.

Note
If a coefficient in the EDITS is very close to zero, (for example in Windows, if the value is smaller than
1.19209290e-07) then the coefficient will be set to zero.

Specifying Edits for Processing Negative Numbers
with Banff
Specifying edits for processing negative numbers in Banff is in most cases as
straightforward as specifying edits for processing nonnegative numbers. However, the
case where we require one variable to be within a certain percentage of another variable
can present some difficulties. This document concentrates on treating this particular case.

Banff uses edit rules which are linear equalities or inequalities. A feasible region defined
by such linear edits is convex. A feasible region in Rn is said to be convex if for all
points A and B in the region and all t in [0,1], the point (1-t)A + tB is also in the region.
In other words, a feasible region is convex if for all points A and B, the line segment
connecting A and B is inside the region.

Convex Feasible Region

Non-Convex Feasible Region

Problem 1: Specify edits for the condition “Variable Y is within 40% of variable X”

When negative values are considered valid values, this condition corresponds to the
inequalities 0.6X<=Y<=1.4X, if X and Y are positive and 0.6X>=Y>=1.4X, if X and Y
are negative, which define the first feasible region below. Clearly, this feasible region is

non-convex; therefore, it cannot be specified using linear edits. Note that the linear edits
“0.6*X<=Y; Y<=1.4*X;” correspond to the second feasible region below. In this
feasible region, all negative values are invalid – i.e. an observation such as (X,Y)=(-50,-
50) will be deemed invalid by PROC ERRORLOC and identified for imputation and will
in turn be imputed with positive values by PROC DONORIMPUTATON.

Feasible region defined by
0.6X<=Y<=1.4X, if X and Y are positive
0.6X>=Y>=1.4X, if X and Y are negative

Feasible region defined by
0.6X<=Y<=1.4X

Solution: One possible way to specify edits for the condition “Variable Y is within 40%
of variable X” is to add a third variable, ABSX, to the dataset and define it as the absolute
value of X. The linear edits can then be defined as “X-0.4*ABSX<=Y;
Y<=X+0.4*ABSX; ABSX>=0;” The corresponding feasible region is convex and shown
below.

Feasible region defined by X-0.4ABSX<=Y<=X+0.4ABSX

PROC ERRORLOC: In PROC ERRORLOC we are interested in identifying invalid
values of X and Y, not ABSX. To ensure that only X and Y can be identified as invalid
by PROC ERRORLOC, a large weight should be assigned to ABSX.

After running PROC ERRORLOC, update your output data set to include an observation
for ABSX with status “FTI” for every record where X was flagged for imputation. This
is necessary because in records where X is considered invalid, the value of ABSX should
be treated as invalid by imputation procedures later on.

PROC DETERMINISTIC: If you are replacing your original edits “X-0.4*ABSX<=Y;
Y<=X+0.4*ABSX; ABSX>=0;” with the equality edit “Y=X;” in PROC
DETERMINISTIC, or if there are no records in which X requires imputation, the variable
ABSX does not require any special treatment. After running PROC DETERMINISTIC,
update your data and status datasets as usual. Then recompute ABSX and change its
status to “IDE” in the status dataset for all records where X was imputed by PROC
DETERMINISTIC to indicate that ABSX is now imputed and valid. Skip the next
paragraph and go on to PROC DONORIMPUTATION.

If you are using the edits “X-0.4*ABSX<=Y; Y<=X+0.4*ABSX; ABSX>=0;” and there
are records in which X was imputed by PROC DETERMINISTIC, it is possible that the
imputed value for X is too large or too small. This is because the relationship between X
and ABSX is not specified by the edits and ABSX is unbounded. Consequently, in a
record with (X,Y,ABSX)=(. ,50, .), 100 would be a valid value for ABSX, so imputing
the value 30 to X does not contradict the edits (30-0.4*100<=50<=30+0.4*100) even
though it does not satisfy our original condition that Y is within 40% of X. To ensure

that such values are detected, create a new dataset containing only the records where X
was imputed by PROC DETERMINISTIC and calculate ABSX based on those values.
Rerun PROC ERRORLOC with the edits “X-0.4*ABSX<=Y; Y<=X+0.4*ABSX;
ABSX>=0;” and with large weights for ABSX and Y. In records where X was imputed
values that were too large or too small by PROC DETERMINISTIC, X will be flagged
for imputation by PROC ERRORLOC. In the above example, the corresponding record
in the new dataset is (X,Y,ABSX)=(30,50,30) and it clearly fails the edits. Because Y
and ABSX have large weights, PROC ERRORLOC will flag X for imputation. Finally,
in all records where X is flagged for imputation by this run of PROC ERRORLOC,
change the status of X from “IDE” back to “FTI” in the status dataset produced by PROC
DETERMINISTIC. Update your original datasets as usual, recompute ABSX and
change its status to “IDE” in the original status dataset for all records where X was
imputed by PROC DETERMINISTIC to indicate that ABSX is now imputed and valid.

PROC DONORIMPUTATION: In PROC DONORIMPUTATION the linear edits “X-
0.4*ABSX<=Y; Y<=X+0.4*ABSX; ABSX>=0;” can be used both as edits and post-
edits. After running PROC DONORIMPUTATION, update your datasets as usual.
Recomputing ABSX is not necessary because whenever X is imputed, the corresponding
correct value for ABSX will be imputed using the same donor with valid values for X and
ABSX.

Problem 2: Specify edits for the condition “Variable Y is no smaller in magnitude
than 50% of variable X and no larger in magnitude than 200% of variable X”.

This condition corresponds to the inequalities 0.5X<=Y<=2X, if X and Y are positive and
2X<=Y<=0.5X, if X and Y are negative. The corresponding feasible region is shown
below. The line X=Y is also shown to make it easier to see that Y is allowed to be
anywhere between twice as large in magnitude as X and half as large in magnitude as X.

Feasible region defined by

0.5X<=Y<=2X, if X and Y are positive
2X<=Y<=0.5X, if X and Y are negative

Feasible region defined by

X-0.5ABSX <= Y <= X+ABSX

This problem is similar to Problem 1, so the same general approach can be taken to solve
it (please read the solution for Problem 1). Note that using the exact same solution as the
solution for Problem 1, will produce the second feasible region shown above, which is
not the region we need. Because the feasible region for this problem is not symmetric
around the line X=Y as in Problem 1, this problem requires the addition of two variables
to the dataset instead of one. Create and define the two variables UB and LB as

The linear edits for this problem are then “X-LB<=Y; Y<=X+UB; LB>=0; UB>=0;”.
These edits can be used in procedures ERRORLOC, DETERMINISTIC and
DONORIMPUTATION as described in the solution for Problem 1 by replacing ABSX in
that solution by LB and UB.

Problem 3: Specify edits for the condition “Variable Y is within 40% plus a
constant of variable X”

Solution: This condition corresponds to the inequalities 0.6X–const<=Y<=1.4X+const,
if X and Y are positive and 0.6X+const>=Y>=1.4X–const, if X and Y are negative. Note
that const is assumed to be a positive constant. The feasible region for this problem is
symmetric around the line X=Y, so the solution is as in Problem 1. Create the variable
ABSX as in Problem 1 and use the linear edits “X–0.4*ABSX–const<=Y;
Y<=X+0.4*ABSX+const; ABSX >= 0;” These edits can be used in procedures
ERRORLOC, DETERMINISTIC and DONORIMPUTATION as described in the
solution for Problem 1.

Problem 4: Specify edits for the condition “Variable Y is no smaller in magnitude
than 60% of variable X less a constant and no larger in magnitude than 140% of
variable X plus another constant”

Solution: This condition corresponds to the inequalities 0.6X–
const1<=Y<=1.4X+const2, if X and Y are positive and 0.6X+const1>=Y>=1.4X– const2,
if X and Y are negative. Note that both constants are assumed to be positive. If
const1≠const2, then the feasible region for this problem is not symmetric around the line
X=Y and so, the solution to this problem is similar to the solution for Problem 2. Create
and define the two variables UB and LB as

The linear edits for this problem are then “X-LB<=Y; Y<=X+UB; LB>=0; UB>=0;”
These edits can be used in the procedures ERRORLOC, DETERMINISTIC and
DONORIMPUTATON as described in the solution for Problem 1 by replacing ABSX in
that solution by LB and UB.

Appendix
Problem 1: An example

Suppose our dataset is as shown below. We want the observations in it to satisfy the
condition “Y is within 40% of X”. We will first use PROC ERRORLOC to identify
fields requiring imputation and then PROC DETERMINISTIC and PROC
DONORIMPUTATION to impute values to these fields. Note that we will use the
variable Z only in PROC DETERMINISTIC for the purpose of generating a deterministic
solution for X. Here the variable Z simply represents any other variables that may be
present in your dataset.

PROC ERRORLOC
First, compute the variable ABSX as the absolute value of X.

data indata;
input ID $ X Y Z;
cards;
R1 100 50 80
R2 100 50 30
R3 -100 -50 -90
R4 -100 -50 -40
R5 80 40 80
;
run;
data indata;
set indata;
ABSX=abs(X);
run;

Use the resulting dataset (shown below) as the input dataset to PROC ERRORLOC.
Note the large weight assigned to ABSX in the PROC ERRORLOC options.

Obs ID X Y Z ABSX

1 R1 100 50 80 100
2 R2 100 50 30 100
3 R3 -100 -50 -90 100
4 R4 -100 -50 -40 100
5 R5 80 40 80 80

PROC ERRORLOC
data=indata
outstatus=outstatus_errorloc1
outreject=outreject_errorloc1
edits="X-0.4*ABSX<=Y; Y<=X+0.4*ABSX; ABSX>=0; X>=-99999; Y>=-99999;"
weights="ABSX=999;"
acceptnegative
seed=9
;
id ID;
run;

The status dataset produced by PROC ERRORLOC is as follows:

 Obs ID FIELDID STATUS

 1 R1 X FTI
 2 R2 X FTI
 3 R3 X FTI
 4 R4 X FTI
 5 R5 Y FTI

Update this status dataset to include an observation for ABSX with status “FTI”
whenever X is flagged for imputation by proc Errorloc.

data updateABSX;
set outstatus_errorloc1;
if fieldid="X";
fieldid="ABSX";
run;
data instatus_deterministic;
set outstatus_errorloc1 updateABSX;
by ID;
run;
proc sort;
by ID fieldid;
run;

The resulting status dataset is as follows:

Obs ID FIELDID STATUS

1 R1 ABSX FTI
2 R1 X FTI
3 R2 ABSX FTI
4 R2 X FTI
5 R3 ABSX FTI
6 R3 X FTI
7 R4 ABSX FTI
8 R4 X FTI
9 R5 Y FTI

PROC DETERMINISTIC
Run PROC DETERMINISTIC with the updated data and status datasets. Here we
include the edit X=Z only to produce a deterministic solution for X for illustrative
purposes. The variable Z represents any set variables in your dataset which in
combination with the remaining edits in your edit set may determine that there is only a
single value for X which will satisfy the edit set.

PROC DETERMINISTIC
data=indata
instatus=instatus_deterministic
out=outdata_deterministic
outstatus=outstatus_deterministic
edits="X-0.4*ABSX<=Y; Y<=X+0.4*ABSX; X=Z; ABSX>=0; X>=-99999; Y>=-
99999;"
acceptnegative
;
id ID;
run;

The data and status datasets produced by PROC DETERMINISTIC are shown as
follows:

Obs ID Z Y X ABSX

1 R1 80 50 80 100
2 R2 30 50 30 100
3 R3 -90 -50 -90 100
4 R4 -40 -50 -40 100

Obs ID FIELDID STATUS

1 R1 X IDE
2 R2 X IDE
3 R3 X IDE
4 R4 X IDE

After running PROC DETERMINISTIC, update the original data and status datasets as
usual and recompute ABSX as the absolute value of X.

data indata;
update indata outdata_deterministic;
by ID;
ABSX=abs(X);
run;
data instatus_donorimputation;
update instatus_deterministic outstatus_deterministic;
by ID fieldid;
run;

The updated data and status datasets are as follows:

Obs ID X Y Z ABSX

1 R1 80 50 80 80

2 R2 30 50 30 30
3 R3 -90 -50 -90 90
4 R4 -40 -50 -40 40
5 R5 80 40 80 80

Obs ID FIELDID STATUS

1 R1 ABSX FTI
2 R1 X IDE
3 R2 ABSX FTI
4 R2 X IDE
5 R3 ABSX FTI
6 R3 X IDE
7 R4 ABSX FTI
8 R4 X IDE
9 R5 Y FTI

If we had replaced the edits “X-0.4*ABSX<=Y; Y<=X+0.4*ABSX; ABSX>=0;” by the
edit “X=Y” in this run of PROC DETERMINISTIC or if there were no values imputed to
X by PROC DETERMINISTIC, we would set the status of ABSX to “IDE” in the above
status dataset for all observations where X was imputed and we would move on to PROC
DONORIMPUTATON. But for illustrative purposes, we used the original edits and
ensured that X was imputed by PROC DETERMINISTIC, so we continue by checking
whether the imputed values of X satisfy our original edits.

Note that the values imputed to X in observations R1 and R4 satisfy the condition “Y is
within 40% of X” but because the relationship between X and ABSX is not specified by
the edits, the values imputed to X in observations R2 and R3 do not satisfy this condition.
To check whether the imputed values of X satisfy our original edits, create a dataset
which contains the subset of observations in which X was imputed a value by PROC
DETERMINISTIC.

proc sql;
create table test
as select * from indata where id in
(select id from instatus_donorimputation where fieldid="X" and
status="IDE");
quit;

The resulting dataset contains observations R1 to R4.

Obs ID X Y Z ABSX

1 R1 80 50 80 80
2 R2 30 50 30 30
3 R3 -90 -50 -90 90
4 R4 -40 -50 -40 40

Run PROC ERRORLOC on this dataset with the original edits. Note the large weights
assigned to ABSX and Y.

PROC ERRORLOC
data=test

outstatus=outstatus_errorloc2
outreject=outreject_errorloc2
edits="X-0.4*ABSX<=Y; Y<=X+0.4*ABSX; ABSX>=0; X>=-99999; Y>=-99999;"
weights="ABSX=999; Y=999;"
acceptnegative
seed=9
;
id ID;
run;

The status dataset produced by PROC ERRORLOC indicates that the values imputed to
X in observations R2 and R3 by PROC DETERMINISTIC do not satisfy the condition
“Y is within 40% of X” as expected.

Obs ID FIELDID STATUS

1 R2 X FTI
2 R3 X FTI

Update the original status dataset by setting the status of these fields back to “FTI”.
Then, for observations where X was imputed an acceptable value by PROC
DETERMINISTIC, set the status of ABSX to “IDE” to indicate that ABSX has been
successfully imputed along with X.

proc sql;
update instatus_donorimputation
set status="FTI"
where fieldid="X" and status="IDE" and id in
(select id from outstatus_errorloc2 where fieldid="X" and
status="FTI");
quit;
data updateABSXstat;
set instatus_donorimputation;
if fieldid="X" and status="IDE";
fieldid="ABSX";
run;
data instatus_donorimputation;
update instatus_donorimputation updateABSXstat;
by ID fieldid;
run;

The resulting status dataset is as follows:

Obs ID FIELDID STATUS

1 R1 ABSX IDE
2 R1 X IDE
3 R2 ABSX FTI
4 R2 X FTI
5 R3 ABSX FTI
6 R3 X FTI
7 R4 ABSX IDE
8 R4 X IDE
9 R5 Y FTI

PROC DONORIMPUTATION
Run PROC DONORIMPUTATION with the latest data and status datasets and the
original edits.

PROC DONORIMPUTATION
data=indata
instatus=instatus_donorimputation
out=outdata_donorimputation
outstatus=outstatus_donorimputation
donormap=map
edits="X-0.4*ABSX<=Y; Y<=X+0.4*ABSX; ABSX>=0; X>=-99999; Y>=-99999;"
postedits="X-0.4*ABSX<=Y; Y<=X+0.4*ABSX; ABSX>=0; X>=-99999; Y>=-
99999;"
mindonors=1
pcentdonors=1
n=1
acceptnegative
;
id ID;
run;

The resulting data, status, and donor map datasets are as follows:

Obs ID ABSX X Y

1 R2 80 80 50
2 R3 40 -40 -50
3 R5 80 80 50

Obs ID FIELDID STATUS

1 R2 ABSX IDN
2 R2 X IDN
3 R3 ABSX IDN
4 R3 X IDN
5 R5 Y IDN

Obs RECIPIENT DONOR NUMBER_OF_ATTEMPTS

1 R2 R1 1
2 R3 R4 1
3 R5 R1 1

Update the original data and status datasets as usual.

data indata;
update indata outdata_donorimputation;
by ID;
run;
proc print; run;
data instatus;
update instatus_donorimputation outstatus_donorimputation;
by ID fieldid;
run;

The final data and status datasets are as follows:

Obs ID X Y Z ABSX

1 R1 80 50 80 80
2 R2 80 50 30 80
3 R3 -40 -50 -90 40
4 R4 -40 -50 -40 40
5 R5 80 50 80 80

Obs ID FIELDID STATUS

1 R1 ABSX IDE
2 R1 X IDE
3 R2 ABSX IDN
4 R2 X IDN
5 R3 ABSX IDN
6 R3 X IDN
7 R4 ABSX IDE
8 R4 X IDE
9 R5 Y IDN

Defining EF algorithms
An estimator function is a mathematical expression involving constants, current and/or historical values of some
variables of the record, and current and/or historical averages of some variables, those averages being calculated
from acceptable records (roughly speaking, an acceptable record is a record such that all variables for which an
average must be calculated in the algorithm are available). Arithmetic operators include the addition (+), the
subtraction (-), the multiplication (*), the division (/), the exponentiation (^) and the unary negation (-).
Parenthesis can be used for changing the order of execution; otherwise the order is determined by standard
rules: the unary negation has the highest priority, followed by the exponentiation, followed by the multiplication
and division, followed by the addition and subtraction.

To define an Estimator Function (EF) algorithm formula, the user fills the variable FORMULA of the
ALGORITHM= data set and the variables FIELDID and optionally AUXVARIABLES of the ESTIMATOR=
data set. Spaces can be used everywhere in an expression except for breaking the name of a placeholder. No
distinction is made between upper and lower case.

Data sets

ALGORITHM= ESTIMATOR=

Example FORMULA FIELDID AUXVARIABLES
y = 1 1 y
y = x2 aux1 ^ 2 y x
y = curr average of y fieldid (a) y
a = curr value of x1 + hist value of x2 aux1 (c, v) + aux2 (h, v) a x1, x2
b = (hist value of y + curr average of y) / 2 (aux1 (h) + aux1 (a)) / 2 b y

In its general form, a placeholder is used with the one of the formats:
AUX1 (period, aggregation),
AUX1 (aggregation, period).

where period is:
C for current data set,
H for the historical data set.

and aggregation is
V for using the variable's value of the observation,
A using the average of the variable based on acceptable observations.

The default period is current and the default aggregation is the value. For example:
AUX1, AUX1 (C), AUX1 (V) and AUX1 (C, V) are equivalent to each other.
AUX1 (H) and AUX1 (v, H) are equivalent to each other.
AUX1 (A) and AUX1 (C, a) are equivalent to each other.

The time period and aggregation options are called placeholder attributes.

Exponents can be applied to constants, placeholders and expressions.

The exponent for a constant simply follows the constant:
3^4

The exponent for a placeholder follows the closing parenthesis of the placeholder attributes:
AUX1^3, AUX1 (C)^3, AUX1 (V)^3 and AUX1 (C, V)^3 each mean the same thing.

The exponent for an expression requires parenthesis enclosing the expression:
(AUX1 (H, V) + AUX2 (H, V))^2

In all cases, the exponent must be a constant (a number). A placeholder cannot be used as an exponent.
Similarly, an expression cannot be used as an exponent, even if it is a constant expression. Thus x^y and
x^(2+1) are not allowed.

Only placeholders FIELDID and AUXn are acceptable in the FORMULA variable. Placeholders are AUX1,
AUX2, AUX3, and so on, starting with 1. We must use AUXn-1 in the algorithm if we use AUXn. The special
placeholder FIELDID is a placeholder for the name of the variable to impute and thus this one won't need to be
passed through the AUXVARIABLES variable of the ESTIMATOR data set. FIELDID (C, V) must never be
used, it has to be imputed.

Variable names specified in the AUXVARIABLES variable are positional. The first one replaces placeholder
AUX1, the second, AUX2, and so on. The number of variables in AUXVARIABLES must be equal to the
number of different AUXn placeholders.

Any constants are numbers different from 0.

Defining LR algorithms
Regression imputation consists of imputing a variable yiC by a linear regression like

yiC = B0 + B1 * X1iT1
P1 + B2 * X2iT2

P2 + ... + Bm * XmiTm
Pm

where Xm are m variables (called independent variables or regressors) specified by the user, the index i refers
to the number of the record, the subscript C refers to the current data and the subscript Tj is either current or
historical data. The superscripts P1, P2, …, Pm are numbers different from zero used as exponents. The Pj can
be non-integer if XjiTj is positive. The B0, B1, ..., Bm are values not specified by the user but instead are
calculated from the acceptable records. Note that B0, which is the intercept in the regression line, is optional
and can be omitted from the model.

To define a Linear Regression (LR) algorithm, the user fills the variable FORMULA of the ALGORITHM=
data set and the variables FIELDID and optionally AUXVARIABLES of the ESTIMATOR= data set. Spaces
can be used everywhere in an expression except for breaking the name of a placeholder. No distinction is made
between upper and lower case.

Data sets

ALGORITHM= ESTIMATOR=
Example FORMULA FIELDID AUXVARIABLES
y = B1 * xC aux1 y x
t = B0 + B1 * xH intercept, aux1(h) t x
y = B1 * a + B2 * b + B3 * c aux1, aux2, aux3 y a, b, c
q = B1 * x + B2 * x2 + B3 * x3 aux1, aux1^2, aux1^3 q x

In its general form, a placeholder is used with the format:
AUX1 (period)

where period is:
C for current data set,
H for the historical data set.

The default period is current. Thus AUX1 and AUX1 (C) are equivalent to each other.

The time period option is called placeholder attribute.

The exponent for a placeholder follows the closing parenthesis of the placeholder attribute:
AUX1^3 and AUX1 (C)^3 each mean the same thing.

In all cases, the exponent must be a constant (a number). A placeholder cannot be used as an exponent.
Similarly, an expression cannot be used as an exponent, even if it is a constant expression. Thus x^y and
x^(2+1) are not allowed.

Only placeholders FIELDID and AUXn are acceptable in the FORMULA variable. Placeholders are AUX1,
AUX2, AUX3, and so on, starting with 1. We must use AUXn-1 in the algorithm if we use AUXn. The special
placeholder FIELDID is a placeholder for the name of the variable to impute and thus this one won't need to

be passed through the AUXVARIABLES variable of the ESTIMATOR data set. FIELDID (C) must never be
used, it has to be imputed, the user must always write FIELDID (H).

A regressor cannot be repeated. The intercept and a variable with the same period and exponent should be
specified once and once only. Commas delimit the different regressors. There is no order for specifying those
elements except that auxiliary variables passed with placeholders should match the order in the
AUXVARIABLES variable of the ESTIMATOR= data set.

Variable names specified in the AUXVARIABLES variable are positional. The first one replaces placeholder
AUX1, the second, AUX2, and so on. The number of variables in AUXVARIABLES must be equal to the
number of different AUXn placeholders.

Any constants are numbers different from 0.

Pre-defined algorithms tables
The first line gives the name, the type and the status code of the pre-defined algorithm.
The second line describes the purpose of the algorithm.
The last one shows the formula.

Estimator functions

AUXTREND : EF : IAT
The value from the previous survey for the same unit, with a trend adjustment calculated from an
auxiliary variable, is imputed.
fieldid(h,v) * aux1(c,v) / aux1(h,v)
AUXTREND2 : EF : IAT2
An average of two AUXTRENDs is imputed.
fieldid(h,v) / 2 * (aux1(c,v) / aux1(h,v) + aux2(c,v) / aux2(h,v))
CURAUX : EF : ICA
The current value of a proxy variable for the same unit is imputed.
aux1(c,v)
CURAUXMEAN : EF : ICAM
The current average of a proxy variable is imputed.
aux1(c,a)
CURMEAN : EF : ICM
The mean value of all (user-defined) respondents for the current survey is imputed.
fieldid(c,a)
CURRATIO : EF : ICR
A ratio estimate, using values of all (user-defined) respondents from the current survey is imputed.
fieldid(c,a) * aux1(c,v) / aux1(c,a)
CURRATIO2 : EF : ICR2
An average of two CURRATIOs is imputed.
fieldid(c,a) / 2 * (aux1(c,v) / aux1(c,a) + aux2(c,v) / aux2(c,a))
CURSUM2 : EF : ISM2
The sum of two auxiliary variables from the current data table.
aux1 + aux2
CURSUM3 : EF : ISM3
The sum of three auxiliary variables from the current data table.
aux1 + aux2 + aux3
CURSUM4 : EF : ISM4
The sum of four auxiliary variables from the current data table.
aux1 + aux2 + aux3 + aux4
DIFTREND : EF : IDT
The value from the previous survey for the same unit, with a trend adjustment calculated from the
difference of reported values for the variable, is imputed.
fieldid(c,a) * fieldid(h,v) / fieldid(h,a)
PREAUX : EF : IPA
The historical value of a proxy variable for the same unit.
aux1(h,v)

PREAUXMEAN : EF : IPAM
The historical average of a proxy variable for the same unit is imputed.
aux1(h,a)
PREMEAN : EF : IPM
The mean value from the previous survey of all (user-defined) respondents is imputed.
fieldid(h,a)
PREVALUE : EF : IPV
The value from the previous survey for the same unit is imputed.
fieldid(h,v)

Estimation by linear regressions

CURREG : LR : ILR1
A simple linear regression based on one independent variable from the current data table.
intercept, aux1(c)
CURREG_E2 : LR : ILRE
A regression based on the value and the squared value of a variable from the current data table.
intercept, aux1(c), aux1(c)^2
CURREG2 : LR : ILR2
A linear regression based on two independent variables from the current data table.
intercept, aux1(c), aux2(c)
CURREG3 : LR : ILR3
A linear regression based on three independent variables from the current data table.
intercept, aux1(c), aux2(c), aux3(c)
HISTREG : LR : IHLR
A linear regression based on the historical value of the variable to impute.
intercept, fieldid(h)

Writing Prorating Edits

Rules
The rules for writing the prorating edits are as follows:

editlist:
 edit
 edit editlist

edit:
 componentlist = variable ;

componentlist:
 component
 component + componentlist

component:
 variable
 variable : modifier
 weight variable
 weight variable : modifier

modifier:
 one of A | I | N | O

variable:
 letter followed by list of letters | digits | underscore

From these rules we can say that:

• An editlist is made up of one or more edits.
• An edit is made up of a componentlist followed by an equal sign (=), followed by a variable and

terminated by a semi-colon (;).
• A componentlist is made up of one or more components. The components are separated by a plus (+)

sign.
• A component is a variable that is optionally preceded by a weight and optionally followed by a colon (:),

followed by a modifier.

Examples of editlist:

Editlist NOTE
Total1 +Total2+Total3 = GrandTotal ; Spaces can be inserted as desired
0.1Total1Part1 +.5 Total1Part2 + 1.2 Total1Part3 + 10
Total1Part4 = Total1;

Decimal values can have leading
zeroes. Number can be integers.

Total2Part1 : a + Total2Part2 : i + Total2Part3 : o + Total2Part4 :
n = Total2;

Use of modifiers. Modifiers can be
specified in lower and/or uppercase.

1Total3Part1:a+2Total3Part2:i+3Total3Part3:o+4Total3Part4:n=Total3; Weights and modifiers are being
specified.

AVariable + AnotherVariable = AnotherGrandTotal;

Editlist
An editlist can contain one or more edits.

Within an editslist, edits do not have to be sorted nor ordered.

There is no restriction on the number of edits in an editlist.

Edit
An edit must be a sum of components that add up to a total. Parts of sums and subtotals can be nested to an
unlimited degree in leading to an overall fixed total.

Modifier
The modifier lets the user choose when or how a variable is modifiable.

Possible values are: A, I, N or O.

A: Always.
I: Imputed.
N: Never.
O: Original.

Variable
The variable must be a valid variable name found on the input data set. In Banff an underscore (_) is not valid
as the first character of a variable name.

A variable cannot be A, I, N or O.

Weight
A weight is a positive number.

Examples of valid numbers are: 1, 0.12, 5, 999999999, 2e1.

Definition of Status Codes used in Banff

FTI: Field To Impute. This code identifies a field that needs imputation. This status code is created either by
the Outlier procedure or by the Errorloc procedure. When created by the Outlier procedure, the code includes
ODIL and ODIR. When created by the Errorloc procedure, it means that the field value does not pass the linear
equations (see the definition of OUTSTATUS= in the Errorloc procedure User Guide).

FTE: Field To Exclude. This code identifies a field which might be excluded. This status code is created by
the Outlier procedure and includes ODEL and ODER. This status code is used to exclude automatically or by
option some observations (See the section Details in the Donorimputation procedure User Guide and the
definition of the data set ESTIMATOR= in the Estimator procedure User Guide).

IDE: Field that has been imputed using the Deterministic imputation method. All imputation procedures will
consider a field flagged as IDE as if it has not been imputed (i.e. the value is considered to be an original or
reported value).

IDN: Field that has been imputed using the Donorimputation imputation method.

IPR: Field that has been prorated using the Prorate procedure.

IAT: Variable that has been imputed using the AUXTREND algorithm of the ESTIMATOR procedure.

IAT2: Variable that has been imputed using the AUXTREND2 algorithm of the ESTIMATOR procedure.

ICA: Variable that has been imputed using the CURAUX algorithm of the ESTIMATOR procedure.

ICAM: Variable that has been imputed using the CURAUXMEAN algorithm of the ESTIMATOR procedure.

ICUM: Variable that has been imputed using the CURMEAN algorithm of the ESTIMATOR procedure.

ICR: Variable that has been imputed using the CURRATIO algorithm of the ESTIMATOR procedure.

ICR2: Variable that has been imputed using the CURRATIO2 algorithm of the ESTIMATOR procedure.

IDT: Variable that has been imputed using the DIFTREND algorithm of the ESTIMATOR procedure.

IHLR: Variable that has been imputed using the HISTREG algorithm of the ESTIMATOR procedure.

ILR1: Variable that has been imputed using the CURREG algorithm of the ESTIMATOR procedure.

ILR2: Variable that has been imputed using the CURREG2 algorithm of the ESTIMATOR procedure.

ILR3: Variable that has been imputed using the CURREG3 algorithm of the ESTIMATOR procedure.

ILRE: Variable that has been imputed using the CURREG_E2 algorithm of the ESTIMATOR procedure.

IPA: Variable that has been imputed using the PREAUX algorithm of the ESTIMATOR procedure.

IPAM: Variable that has been imputed using the PREAUXMEAN algorithm of the ESTIMATOR procedure.

IPM: Variable that has been imputed using the PREMEAN algorithm of the ESTIMATOR procedure.

IPV: Variable that has been imputed using the PREVALUE algorithm of the ESTIMATOR procedure.

ISM2: Variable that has been imputed using the CURSUM2 algorithm of the ESTIMATOR procedure.

ISM3: Variable that has been imputed using the CURSUM3 algorithm of the ESTIMATOR procedure.

ISM4: Variable that has been imputed using the CURSUM4 algorithm of the ESTIMATOR procedure.

MFS: Field flagged by the system as a matching field for a given recipient. This code is generated by the
Donorimputation procedure.

MFU: Field flagged by the user (MUSTMATCH=) as a matching field for all recipients. This code is
generated by the Donorimputation procedure.

MFB: Field flagged by the system as a matching field for a given recipient and by the user
(MUSTMATCH=) as a matching field for all recipients. This code is generated by the Donorimputation
procedure.

These status codes must be specified in CAPITAL letters in order to be recognised by Banff. They will be
generated in the OUTSTATUS= data set if the MATCHFIELDSTAT option has been specified when calling
the Donorimputation procedure.

ODER: Outlier field, with values falling outside the exclusion interval, on the right (see the definition of
MEI= in the Outlier procedure User Guide).

ODEL: Outlier field, with values falling outside the exclusion interval, on the left (see the definition of MEI=
in the Outlier procedure User Guide)

ODIR: Outlier field, with values falling outside the imputation interval, on the right (see the definition of
MII= in the Outlier procedure User Guide)

ODIL: Outlier field, with values falling outside the imputation interval, on the left (see the definition of MII=
in the Outlier procedure User Guide)

	The Banff software version 2.05
	General Information
	Overview
	Functions
	Benefits
	Installation
	Banff news subscription service
	Documentation
	Support Team

	The VERIFYEDITS Procedure
	Overview
	Procedure Syntax
	PROC VERIFYEDITS Statement
	Options
	Details
	Example 1
	Example 2
	Notes

	The EDITSTATS Procedure
	Overview
	Procedure Syntax
	PROC EDITSTATS Statement
	Options
	BY Statement
	Details
	Example
	Notes

	The OUTLIER Procedure
	Overview
	Procedure Syntax
	PROC OUTLIER Statement
	Options
	ID Statement
	VAR Statement
	WITH Statement
	BY Statement
	Details
	Example 1
	Example 2
	Notes

	The ERRORLOC Procedure
	Overview
	Procedure Syntax
	PROC ERRORLOC Statement
	Options
	ID Statement
	BY Statement
	Details
	Example
	Note

	The DETERMINISTIC Procedure
	Overview
	Procedure Syntax
	PROC DETERMINISTIC Statement
	Options
	ID Statement
	BY Statement
	Details
	Example
	Notes

	The DONORIMPUTATION Procedure
	Overview
	Procedure Syntax
	PROC DONORIMPUTATION Statement
	Options
	ID Statement
	MUSTMATCH Statement
	DATAEXCLVAR Statement
	BY Statement
	Details
	Example
	Note

	The ESTIMATOR Procedure
	Overview
	Procedure Syntax
	PROC ESTIMATOR Statement
	Options
	ID Statement
	DATAEXCLVAR Statement
	HISTEXCLVAR Statement
	BY Statement
	Predefined algorithms
	Details
	Example 1
	Example 2
	Note

	The PRORATE Procedure
	Overview
	Procedure Syntax
	PROC PRORATE Statement
	Options
	ID Statement
	BY Statement
	Details
	Example 1
	Example 2
	Example 3
	Notes

	The MASSIMPUTATION Procedure
	Overview
	Procedure Syntax
	PROC MASSIMPUTATION Statement
	Options
	ID Statement
	MUSTIMPUTE Statement
	MUSTMATCH Statement
	BY Statement
	Details
	Example
	Note

	Writing Linear Edits
	Rules
	Editlist
	Edit
	Modifier
	Variable

	Specifying Edits for Processing Negative Numbers with Banff
	Defining EF algorithms
	Defining LR algorithms
	Pre-defined algorithms tables
	Estimator functions
	Estimation by linear regressions

	Writing Prorating Edits
	Rules
	Editlist
	Edit
	Modifier
	Variable
	Weight

	Definition of Status Codes used in Banff

